Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
27,641 result(s) for "phenolic compounds"
Sort by:
Exploring the Correlation Between the Molecular Structure and Biological Activities of Metal–Phenolic Compound Complexes: Research and Description of the Role of Metal Ions in Improving the Antioxidant Activities of Phenolic Compounds
We discussed and summarized the latest data from the global literature on the action of polyphenolic antioxidants and their metal complexes. The review also includes a summary of the outcomes of theoretical computations and our many years of experimental experience. We employed various methods, including spectroscopy (FT-IR, FT-Raman, NMR, UV/Vis), X-ray diffraction, thermal analysis, quantum calculations, and biological assays (DPPH, ABTS, FRAP, cytotoxicity, and genotoxicity tests). According to our research, the number and position of hydroxyl groups in aromatic rings, as well as the delocalization of electron charge and conjugated double bonds, have a major impact on the antioxidant effectiveness of the studied compounds. Another important factor is metal complexation, whereby high ionic potential metals (e.g., Fe(III), Cr(III), Cu(II)) enhance antioxidant properties by stabilizing electron charge, while the low ionic potential metals (e.g., Ag(I), Hg(II), Pb(II)) reduce efficacy by disrupting electron distribution. However, we observed no simple correlation between ionic potential and antioxidant capacity. This paper gives insights that will aid in identifying new, effective antioxidants, which are vital for nutrition and the prevention of neurodegenerative illnesses. Our results outline the connections between biological activity and molecular structure, offering a foundation for the methodical design of antioxidants. Our review also shows in detail how we use various complementary methods to assess the impact of metals on the electronic systems of ligands. This approach moves beyond the traditional “trial and error” method, allowing for the more efficient and rational development of future antioxidants.
How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys
Honey contains natural biologically active compounds, and its preventive and healing properties are primarily linked to its antioxidant activity. The antioxidant properties of honey can be related to the botanical origin and content of phenolic compounds. We tested 84 honey samples from Poland, representing eight honey varieties: acacia, phacelia, buckwheat, linden, rapeseed, heather, goldenrod, and honeydew. High-performance liquid chromatography with photodiode-array detection (HPLC-DAD) was used to determine the phenolic compound composition of honey extracts. Total phenolic compounds (TPC) and DPPH radical-scavenging activity were also evaluated. We detected vanillin aldehyde, vanillic acid, caffeic acid, p-coumaric acid, and trans-ferulic acid, as well as flavonoid pinocembrin, in all honey varieties. The results of our study showed that honeys with high antioxidant activity were characterized by significantly higher total phenolic compounds content. Neither clustering method nor principal component analysis (PCA) showed clear separation of each honey variety, possibly due to high intra-variety diversities. We suppose that the variability of qualitative and quantitative phenolic compound composition within honey varieties may result from the region of origin, secondary nectar sources, and the time of harvest.
Dietary Phenolic Compounds as Anticancer Natural Drugs: Recent Update on Molecular Mechanisms and Clinical Trials
Given the stochastic complexity of cancer diseases, the development of chemotherapeutic drugs is almost limited by problems of selectivity and side effects. Furthermore, an increasing number of protective approaches have been recently considered as the main way to limit these pathologies. Natural bioactive compounds, and particularly dietary phenolic compounds, showed major protective and therapeutic effects against different types of human cancers. Indeed, phenolic substances have functional groups that allow them to exert several anti-cancer mechanisms, such as the induction of apoptosis, autophagy, cell cycle arrest at different stages, and the inhibition of telomerase. In addition, in vivo studies show that these phenolic compounds also have anti-angiogenic effects via the inhibition of invasion and angiogenesis. Moreover, clinical studies have already highlighted certain phenolic compounds producing clinical effects alone, or in combination with drugs used in chemotherapy. In the present work, we present a major advance in research concerning the mechanisms of action of the different phenolic compounds that are contained in food medicinal plants, as well as evidence from the clinical trials that focus on them.
HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks
The identification and quantification of phenolic compounds and flavonoids in various natural food products is typically conducted using HPLC analysis. Their analysis is particularly complex since most natural food products contain a large number of different phenolic compounds, many of which have similar chemical characteristics such as polarity, which makes complete separation of all eluents extremely difficult. In this work we present and validate a method for the quantitative determination of the concentration of two compounds with similar retention times, i.e. they show overlapping peaks in a mixed solution. Two pairs of phenolic compounds were investigated: caffeic and vanillic acids and ferulic and p-coumaric acids. This technique takes advantage of the different absorbances of the two phenolic compounds in the eluent at various wavelengths and can be used for the quantitative determination of the concentration of these compounds even if they are not separated in the HPLC column. The presented method could be used to interpret the results of HPLC analysis of food products which possess a vast spectrum of phenolic compounds and flavonoids.
Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus
This study was aimed at investigating the effect of low polarity water (LPW) on the extraction of bioactive compounds from Fucus vesiculosus and to examine the influence of temperature on the extraction yield, total phenolic content, crude alginate, fucoidan content, and antioxidant activity. The extractions were performed at the temperature range of 120–200 °C with 10 °C increments, and the extraction yield increased linearly with the increasing extraction temperature, with the highest yields at 170–200 °C and with the maximum extraction yield (25.99 ± 2.22%) at 190 °C. The total phenolic content also increased with increasing temperature. The extracts showed a high antioxidant activity, measured with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals scavenging and metal-chelating activities of 0.14 mg/mL and 1.39 mg/mL, respectively. The highest yield of alginate and crude fucoidan were found at 140 °C and 160 °C, respectively. The alginate and crude fucoidan contents of the extract were 2.13% and 22.3%, respectively. This study showed that the extraction of bioactive compounds from seaweed could be selectively maximized by controlling the polarity of an environmentally friendly solvent.
Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans
The current study investigates the phytochemical composition of coffee plant organs and their corresponding antioxidant capacities compared to green and roasted coffee beans. HPLC analysis indicated that the investigated compounds were present in all organs except mangiferin, which was absent in roots, stems and seeds, and caffeine, which was absent in stems and roots. Total phytochemicals were highest in the green beans (GB) at 9.70 mg g−1 dry weight (DW), while roasting caused a 66% decline in the roasted beans (RB). This decline resulted more from 5–CQA and sucrose decomposition by 68% and 97%, respectively, while caffeine and trigonelline were not significantly thermally affected. Roasting increased the total phenolic content (TPC) by 20.8% which was associated with an increase of 68.8%, 47.5% and 13.4% in the antioxidant capacity (TEAC) determined by 2,2–diphenyl–1–picryl hydrazyl radical (DPPH), 2,2–azino bis (3–ethyl benzothiazoline–6–sulphonic acid) radical (ABTS) and Ferric ion reducing antioxidant power (FRAP) assays, respectively. Amongst the leaves, the youngest (L1) contained the highest content at 8.23 mg g−1 DW, which gradually reduced with leaf age to 5.57 mg g−1 DW in the oldest (L6). Leaves also contained the highest TPC (over 60 mg g−1 GAE) and exhibited high TEAC, the latter being highest in L1 at 328.0, 345.7 and 1097.4, and least in L6 at 304.6, 294.5 and 755.1 µmol Trolox g−1 sample for the respective assays. Phytochemical accumulation, TPC and TEAC were least in woody stem (WS) at 1.42 mg g−1 DW; 8.7 mg g−1 GAE; 21.9, 24.9 and 110.0 µmol Trolox g−1 sample; while herbaceous stem (HS) contained up to 4.37 mg g−1 DW; 27.8 mg g−1 GAE; 110.9, 124.8 and 469.7 µmol Trolox g−1 sample, respectively. Roots contained up to 1.85 mg g−1 DW, 15.8 mg−1 GAE and TEAC of 36.8, 41.5 and 156.7 µmol Trolox g−1 sample. Amongst the organs, therefore, coffee leaves possessed higher values than roasted beans on the basis of phytochemicals, TPC and TEAC. Leaves also contain carotenoids and chlorophylls pigments with potent health benefits. With appropriate processing methods, a beverage prepared from leaves (coffee leaf tea) could be a rich source of phytochemicals and antioxidants with therapeutic and pharmacological values for human health.
Dehydration, Rehydration and Thermal Treatment: Effect on Bioactive Compounds of Red Seaweeds Porphyra umbilicalis and Porphyra linearis
The nutritional and bioactive value of seaweeds is widely recognized, making them a valuable food source. To use seaweeds as food, drying and thermal treatments are required, but these treatments may have a negative impact on valuable bioactive compounds. In this study, the effects of dehydration, rehydration, and thermal treatment on the bioactive compounds (carotenoids, phycobiliproteins, total phenolic content (TPC), total flavonoids content (TFC)), antioxidant (ABTS and DPPH radical scavenging activities) and anti-Alzheimer’s (Acetylcholinesterase (AchE) inhibitory activities, and color properties of Porphyra umbilicalis and Porphyra linearis seaweeds were evaluated. The results revealed significant reductions in carotenoids, TPC, TFC, and antioxidant activities after the seaweeds’ processing, with differences observed between species. Thermal treatment led to the most pronounced reductions in bioactive compound contents and antioxidant activity. AchE inhibitory activity remained relatively high in all samples, with P. umbilicalis showing higher activity than P. linearis. Changes in color (ΔE) were significant after seaweeds’ dehydration, rehydration and thermal treatment, especially in P. umbilicalis. Overall, optimizing processing methods is crucial for preserving the bioactive compounds and biological activities of seaweeds, thus maximizing their potential as sustainable and nutritious food sources or as nutraceutical ingredients.
Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves
Stinging nettle (Urtica dioica) is a plant well known in traditional medicine for its many beneficial properties, but the lack of standardization regarding the product to offer to consumers limits its diffusion. To this end, drying appears to be a useful technique to offer a low-cost product that can be stored for long time, but the different drying procedures may give rise to end-products of very different quality as nutraceutical and antioxidant compounds. Nettle leaves have been dehydrated employing freeze-drying (FD), oven-drying (OD) or heat pump drying (HPD) and compared with fresh leaves following water extraction to emulate the use by final consumers. Results indicate that the best dehydration technique is HPD, which apparently gives rise to more than a doubling of total phenols and antioxidant activity in the extract compared to the water extract obtained from fresh leaves but a reduction in the level of ascorbic acid of about 39%. In addition, the content of some phenolic compounds is 10 to over a hundred times higher in the extract after HPD than that obtained from fresh samples. This confirms that the dehydration technique should be tuned in relation to the compounds of greatest interest or value.
Bacterial laccase: recent update on production, properties and industrial applications
Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.
Synthesis of Black-TiO2 and manganese-doped TiO2 nanoparticles and their comparative performance evaluation for photocatalytic removal of phenolic compounds from agro-industrial effluent
In this paper, the synthesis, characterization, and comparative performance of Black-TiO2 and manganese-doped TiO2 (Mn-TiO2) nanoparticles for photocatalytic removal of phenolic compounds from agro-industrial effluent known as treated palm oil mill effluent (TPOME) are reported. The Black-TiO2 nanoparticles were synthesized via a green synthesis approach using a renewable chemical, glycerol as a reducing agent. The Mn-TiO2 nanoparticles were synthesized via the wet impregnation method using potassium permanganate (KMnO4) as a precursor. Experimental results revealed that both types of TiO2 nanoparticles, Black-TiO2 and Mn-TiO2 nanoparticles were anatase phase with a particle size range from 30–80 nm, improved visible light absorption and narrow bandgap of 2.96 and 2.12 eV, respectively. The improved visible light absorption was ascribed to the presence of Ti3+ defect states in Black-TiO2 nanoparticles and the substation of Mn into TiO2 matrix in Mn-TiO2 nanoparticles. The improved visible light absorption led to the enhanced photocatalytic performance of Black-TiO2 and Mn-TiO2 nanoparticles. The former was able to remove 48.17% whereas the latter removed 39.11% of 224.85 mg/L of phenolic compounds from TPOME under 180 min of visible light irradiation. The Black-TiO2 and Mn-TiO2 nanoparticles showed 2.2-fold and 1.7-fold higher performance, respectively, than the Pure-TiO2 nanoparticles. The Black-TiO2 nanoparticles exhibited superior photocatalytic performance, and the highest reaction rate constant (Kapp = 0.31127) was achieved which is two-fold higher than the one obtained by Pure-TiO2 nanoparticles (Kapp = 0.14733). The recyclability test showed that Mn-TiO2 nanoparticles were more stable indicated by their negligible loss (1.55%) of photoactivity after five repeated cycles.