Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
10,560 result(s) for "phylogeography"
Sort by:
Correction: New Neotropical Sebacinales Species from a Pakaraimaea dipterocarpacea Forest in the Guayana Region, Southern Venezuela: Structural Diversity and Phylogeography
Notice of Republication This article was republished on August 11, 2014, to replace incorrectly changed characters in the byline, copyright statement, references, and body text in the online version only. Moyersoen B, Weiß M (2014) New Neotropical Sebacinales Species from a Pakaraimaea dipterocarpacea Forest in the Guayana Region, Southern Venezuela: Structural Diversity and Phylogeography.
Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses
For three decades, comparative phylogeography has conceptually and methodologically relied on the concordance criterion for providing insights into the historical/biogeographic processes driving population genetic structure and divergence. Here we discuss how this emphasis, and the corresponding lack of methods for extracting information about biotic/intrinsic contributions to patterns of genetic variation, may bias our general understanding of the factors driving genetic structure. Specifically, this emphasis has promoted a tendency to attribute discordant phylogeographic patterns to the idiosyncracies of history, as well as an adherence to generic null expectations of concordance with reduced predictive power. We advocate that it is time for a paradigm shift in comparative phylogeography, especially given the limited utility of the concordance criterion as genomic data provide ever-increasing levels of resolution. Instead of adhering to the concordance-discordance dichotomy, comparative phylogeography needs to emphasize the contribution of taxon-specific traits that will determine whether concordance is a meaningful criterion for evaluating hypotheses or may predict discordant phylogeographic structure. Through reference to some case studies we illustrate how refined hypotheses based on taxon-specific traits can provide improved predictive frameworks to forecast species responses to climatic change or biogeographic barriers while gaining unique insights about the taxa themselves and their interactions with their environment.We outline a potential avenue toward a synthetic comparative phylogeographic paradigm that includes addressing some important conceptual and methodological challenges related to study design and application of model-based approaches for evaluating support of trait-based hypotheses under the proposed paradigm.
Relax, Keep Walking — A Practical Guide to Continuous Phylogeographic Inference with BEAST
Spatially explicit phylogeographic analyses can be performed with an inference framework that employs relaxed random walks to reconstruct phylogenetic dispersal histories in continuous space. This core model was first implemented 10 years ago and has opened up new opportunities in the field of phylodynamics, allowing researchers to map and analyze the spatial dissemination of rapidly evolving pathogens. We here provide a detailed and step-by-step guide on how to set up, run, and interpret continuous phylogeographic analyses using the programs BEAUti, BEAST, Tracer, and TreeAnnotator.
Reticulation, divergence, and the phylogeography–phylogenetics continuum
Phylogeography, and its extensions into comparative phylogeography, have their roots in the layering of gene trees across geography, a paradigm that was greatly facilitated by the nonrecombining, fast evolution provided by animal mtDNA. As phylogeography moves into the era of next-generation sequencing, the specter of reticulation at several levels—within loci and genomes in the form of recombination and across populations and species in the form of introgression—has raised its head with a prominence even greater than glimpsed during the nuclear gene PCR era. Here we explore the theme of reticulation in comparative phylogeography, speciation analysis, and phylogenomics, and ask how the centrality of gene trees has fared in the next-generation era. To frame these issues, we first provide a snapshot of multilocus phylogeographic studies across the Carpentarian Barrier, a prominent biogeographic barrier dividing faunas spanning themonsoon tropics in northern Australia. We find that divergence across this barrier is evident in most species, but is heterogeneous in time and demographic history, often reflecting the taxonomic distinctness of lineages spanning it. We then discuss a variety of forces generating reticulate patterns in phylogeography, including introgression, contact zones, and the potential selection-driven outliers on next-generation molecular markers. We emphasize the continued need for demographic models incorporating reticulation at the level of genomes and populations, and conclude that gene trees, whether explicit or implicit, should continue to play a role in the future of phylogeography.
The Structured Coalescent and Its Approximations
Phylogeographic methods can help reveal the movement of genes between populations of organisms. This has been widely done to quantify pathogen movement between different host populations, the migration history of humans, and the geographic spread of languages or gene flow between species using the location or state of samples alongside sequence data. Phylogenies therefore offer insights into migration processes not available from classic epidemiological or occurrence data alone. Phylogeographic methods have however several known shortcomings. In particular, one of the most widely used methods treats migration the same as mutation, and therefore does not incorporate information about population demography. This may lead to severe biases in estimated migration rates for data sets where sampling is biased across populations. The structured coalescent on the other hand allows us to coherently model the migration and coalescent process, but current implementations struggle with complex data sets due to the need to infer ancestral migration histories. Thus, approximations to the structured coalescent, which integrate over all ancestral migration histories, have been developed. However, the validity and robustness of these approximations remain unclear. We present an exact numerical solution to the structured coalescent that does not require the inference of migration histories. Although this solution is computationally unfeasible for large data sets, it clarifies the assumptions of previously developed approximate methods and allows us to provide an improved approximation to the structured coalescent. We have implemented these methods in BEAST2, and we show how these methods compare under different scenarios.
emergence and promise of functional biogeography
Understanding, modeling, and predicting the impact of global change on ecosystem functioning across biogeographical gradients can benefit from enhanced capacity to represent biota as a continuous distribution of traits. However, this is a challenge for the field of biogeography historically grounded on the species concept. Here we focus on the newly emergent field of functional biogeography: the study of the geographic distribution of trait diversity across organizational levels. We show how functional biogeography bridges species-based biogeography and earth science to provide ideas and tools to help explain gradients in multifaceted diversity (including species, functional, and phylogenetic diversities), predict ecosystem functioning and services worldwide, and infuse regional and global conservation programs with a functional basis. Although much recent progress has been made possible because of the rising of multiple data streams, new developments in ecoinformatics, and new methodological advances, future directions should provide a theoretical and comprehensive framework for the scaling of biotic interactions across trophic levels and its ecological implications.
Navigating Sampling Bias in Discrete Phylogeographic Analysis: Assessing the Performance of an Adjusted Bayes Factor
Abstract Bayesian phylogeographic inference is widely used in molecular epidemiological studies to reconstruct the dispersal history of pathogens. Discrete phylogeographic analysis treats geographic locations as discrete traits and infers lineage transition events among them, and is typically followed by a Bayes factor (BF) test to assess the statistical support. In the standard BF (BFstd) test, the relative abundance of the involved trait states is not considered, which can be problematic in the case of unbalanced sampling. Existing methods to correct sampling bias in discrete phylogeographic analyses using continuous-time Markov chain (CTMC) model, often require additional epidemiological information to balance the sampling effort among locations. As such data is not necessarily available, alternative approaches that rely solely on available genomic data are needed. In this perspective, we assess the performance of a modification of the BFstd, the adjusted Bayes factor (BFadj), which incorporates information on the relative abundance of samples by location when inferring support for transition events and root location inference without requiring additional data. Using a simulation framework, we assess the statistical performance of BFstd and BFadj under varying levels of sampling bias, estimating their type I and type II error rates. Our results show that BFadj complements the BFstd by reducing type I errors at the cost increasing type II errors for inferred transition events, while improving type I and type II errors in root location inference. Our findings provide guidelines for implementing the complementary BFadj to detect and mitigate sampling bias in discrete phylogeographic inference using CTMC modeling.
Global biogeography of microbial nitrogen-cycling traits in soil
Microorganisms drive much of the Earth’s nitrogen (N) cycle, but we still lack a global overview of the abundance and composition of the microorganisms carrying out soil N processes. To address this gap, we characterized the biogeography of microbial N traits, defined as eight N-cycling pathways, using publically available soil metagenomes. The relative frequency of N pathways varied consistently across soils, such that the frequencies of the individual N pathways were positively correlated across the soil samples. Habitat type, soil carbon, and soil N largely explained the total N pathway frequency in a sample. In contrast, we could not identify major drivers of the taxonomic composition of the N functional groups. Further, the dominant genera encoding a pathway were generally similar among habitat types. The soil samples also revealed an unexpectedly high frequency of bacteria carrying the pathways required for dissimilatory nitrate reduction to ammonium, a little-studied N process in soil. Finally, phylogenetic analysis showed that some microbial groups seem to be N-cycling specialists or generalists. For instance, taxa within the Deltaproteobacteria encoded all eight N pathways, whereas those within the Cyanobacteria primarily encoded three pathways. Overall, this trait-based approach provides a baseline for investigating the relationship between microbial diversity and N cycling across global soils.
Species Delimitation using Genome-Wide SNP Data
The multispecies coalescent has provided important progress for evolutionary inferences, including increasing the statistical rigor and objectivity of comparisons among competing species delimitation models. However, Bayesian species delimitation methods typically require brute force integration over gene trees via Markov chain Monte Carlo (MCMC), which introduces a large computation burden and precludes their application to genomic-scale data. Here we combine a recently introduced dynamic programming algorithm for estimating species trees that bypasses MCMC integration over gene trees with sophisticated methods for estimating marginal likelihoods, needed for Bayesian model selection, to provide a rigorous and computationally tractable technique for genome-wide species delimitation. We provide a critical yet simple correction that brings the likelihoods of different species trees, and more importantly their corresponding marginal likelihoods, to the same common denominator, which enables direct and accurate comparisons of competing species delimitation models using Bayes factors. We test this approach, which we call Bayes factor delimitation (*with genomic data; BFD*), using common species delimitation scenarios with computer simulations. Varying the numbers of loci and the number of samples suggest that the approach can distinguish the true model even with few loci and limited samples per species. Misspecification of the prior for population size θ has little impact on support for the true model. We apply the approach to West African forest geckos (Hemidactylus fasciatus complex) using genome-wide SNP data. This new Bayesian method for species delimitation builds on a growing trend for objective species delimitation methods with explicit model assumptions that are easily tested.