Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
571 result(s) for "phylotype"
Sort by:
Host selection shapes crop microbiome assembly and network complexity
• Plant microbiomes are essential to host health and productivity but the ecological processes that govern crop microbiome assembly are not fully known. • Here we examined bacterial communities across 684 samples from soils (rhizosphere and bulk soil) and multiple compartment niches (rhizoplane, root endosphere, phylloplane, and leaf endosphere) in maize (Zea mays)-wheat (Triticum aestivum)/barley (Hordeum vulgare) rotation system under different fertilization practices at two contrasting sites. • Our results demonstrate that microbiome assembly along the soil-plant continuum is shaped predominantly by compartment niche and host species rather than by site or fertilization practice. From soils to epiphytes to endophytes, host selection pressure sequentially increased and bacterial diversity and network complexity consequently reduced, with the strongest host effect in leaf endosphere. Source tracking indicates that crop microbiome is mainly derived from soils and gradually enriched and filtered at different plant compartment niches. Moreover, crop microbiomes were dominated by a few dominant taxa (c. 0.5% of bacterial phylotypes), with bacilli identified as the important biomarker taxa for wheat and barley and Methylobacteriaceae for maize. • Our work provides comprehensive empirical evidence on host selection, potential sources and enrichment processes for crop microbiome assembly, and has important implications for future crop management and manipulation of crop microbiome for sustainable agriculture.
Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe
We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities. Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation. Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres.
Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle
The candidate phylum TM7 is globally distributed and often associated with human inflammatory mucosal diseases. Despite its prevalence, the TM7 phylum remains recalcitrant to cultivation, making it one of the most enigmatic phyla known. In this study, we cultivated a TM7 phylotype (TM7x) from the human oral cavity. This extremely small coccus (200–300 nm) has a distinctive lifestyle not previously observed in human-associated microbes. It is an obligate epibiont of anActinomyces odontolyticusstrain (XH001) yet also has a parasitic phase, thereby killing its host. This first completed genome (705 kb) for a human-associated TM7 phylotype revealed a complete lack of amino acid biosynthetic capacity. Comparative genomics analyses with uncultivated environmental TM7 assemblies show remarkable conserved gene synteny and only minimal gene loss/gain that may have occurred as TM7x adapted to conditions within the human host. Transcriptomic and metabolomic profiles provided the first indications, to our knowledge, that there is signaling interaction between TM7x and XH001. Furthermore, the induction of TNF-α production in macrophages by XH001 was repressed in the presence of TM7x, suggesting its potential immune suppression ability. Overall, our data provide intriguing insights into the uncultivability, pathogenicity, and unique lifestyle of this previously uncharacterized oral TM7 phylotype.
Vaginal microbiome of reproductive-age women
The means by which vaginal microbiomes help prevent urogenital diseases in women and maintain health are poorly understood. To gain insight into this, the vaginal bacterial communities of 396 asymptomatic North American women who represented four ethnic groups (white, black, Hispanic, and Asian) were sampled and the species composition characterized by pyrosequencing of barcoded 16S rRNA genes. The communities clustered into five groups: four were dominated by Lactobacillus iners, L. crispatus, L. gasseri , or L. jensenii , whereas the fifth had lower proportions of lactic acid bacteria and higher proportions of strictly anaerobic organisms, indicating that a potential key ecological function, the production of lactic acid, seems to be conserved in all communities. The proportions of each community group varied among the four ethnic groups, and these differences were statistically significant [χ 2 (10) = 36.8, P < 0.0001]. Moreover, the vaginal pH of women in different ethnic groups also differed and was higher in Hispanic (pH 5.0 ± 0.59) and black (pH 4.7 ± 1.04) women as compared with Asian (pH 4.4 ± 0.59) and white (pH 4.2 ± 0.3) women. Phylotypes with correlated relative abundances were found in all communities, and these patterns were associated with either high or low Nugent scores, which are used as a factor for the diagnosis of bacterial vaginosis. The inherent differences within and between women in different ethnic groups strongly argues for a more refined definition of the kinds of bacterial communities normally found in healthy women and the need to appreciate differences between individuals so they can be taken into account in risk assessment and disease diagnosis.
Short-Chain Fatty Acids Modulate Healthy Gut Microbiota Composition and Functional Potential
Many studies have focused on the metabolic capacity of human gut microbiota to produce short-chain fatty acids and subsequent effects on host physiology. Given scarce data on how SCFAs produced by gut bacteria participate in cross-feeding to influence community structure and function, we evaluated the potential of SCFAs to modulate human gut microbiota in vitro. We employed anaerobic fecal cultivation in chemically defined medium supplemented with one of nine SCFAs to determine effects on both gut microbial community structure via 16S rRNA sequencing and function via genome reconstruction analysis. Each SCFA displayed significant and unique modulatory potential with respect to the relative abundance of bacterial taxa. Analysis of SCFA-supplemented communities revealed that alterations of individual closely related phylotypes displayed coherent changes, although exceptions were also observed which suggest strain-dependent differences in SCFA-induced changes. We used genome reconstruction to evaluate the functional implications of SCFA-mediated restructuring of fecal communities. We note that some SCFA-supplemented cultures displayed a reduction in the predicted abundance of SCFA producers, which suggests a possible undefined negative feedback mechanism. We conclude that SCFAs are not simply end-products of metabolism but also serve to modulate the gut microbiota through cross-feeding that alters the fitness of specified taxa. These results are important in the identification of prebiotics that elevate specific SCFAs for therapeutic benefit and highlight SCFA consumers as a salient part of the overall metabolic flux pertaining to bacterial fermentative processes.
Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation
Background The Anaerolineae lineage of Chloroflexi had been identified as one of the core microbial populations in anaerobic digesters; however, the ecological role of the Anaerolineae remains uncertain due to the scarcity of isolates and annotated genome sequences. Our previous metatranscriptional analysis revealed this prevalent population that showed minimum involvement in the main pathways of cellulose hydrolysis and subsequent methanogenesis in the thermophilic cellulose fermentative consortium (TCF). Results In further pursuit, five high-quality curated draft genomes (>98 % completeness) of this population, including two affiliated with the inaccessible lineage of SBR1031, were retrieved by sequence-based multi-dimensional coverage binning. Comparative genomic analyses revealed versatile genetic capabilities for carbohydrate-based fermentative lifestyle including key genes catalyzing cellulose hydrolysis in Anaerolinea phylotypes. However, the low transcriptional activities of carbohydrate-active genes (CAGs) excluded cellulolytic capability as the selective advantage for their prevalence in the community. Instead, a substantially active type VI pili (Tfp) assembly was observed. Expression of the tight adherence protein on the Tfp indicated its function for cellular attachment which was further testified to be more likely related to cell aggregation other than cellulose surface adhesion. Meanwhile, this Tfp structure was found not contributing to syntrophic methanogenesis. Members of the SBR1031 encoded key genes for acetogenic dehydrogenation that may allow ethanol to be used as a carbon source. Conclusion The common prevalence of Anaerolineae in anaerobic digesters should be originated from advantageous cellular adhesiveness enabled by Tfp assembly other than its potential as cellulose degrader or anaerobic syntrophs.
Human oral, gut, and plaque microbiota in patients with atherosclerosis
Periodontal disease has been associated with atherosclerosis, suggesting that bacteria from the oral cavity may contribute to the development of atherosclerosis and cardiovascular disease. Furthermore, the gut microbiota may affect obesity, which is associated with atherosclerosis. Using qPCR, we show that bacterial DNA was present in the atherosclerotic plaque and that the amount of DNA correlated with the amount of leukocytes in the atherosclerotic plaque. To investigate the microbial composition of atherosclerotic plaques and test the hypothesis that the oral or gut microbiota may contribute to atherosclerosis in humans, we used 454 pyrosequencing of 16S rRNA genes to survey the bacterial diversity of atherosclerotic plaque, oral, and gut samples of 15 patients with atherosclerosis, and oral and gut samples of healthy controls. We identified Chryseomonas in all atherosclerotic plaque samples, and Veillonella and Streptococcus in the majority. Interestingly, the combined abundances of Veillonella and Streptococcus in atherosclerotic plaques correlated with their abundance in the oral cavity. Moreover, several additional bacterial phylotypes were common to the atherosclerotic plaque and oral or gut samples within the same individual. Interestingly, several bacterial taxa in the oral cavity and the gut correlated with plasma cholesterol levels. Taken together, our findings suggest that bacteria from the oral cavity, and perhaps even the gut, may correlate with disease markers of atherosclerosis.
influence of sex, handedness, and washing on the diversity of hand surface bacteria
Bacteria thrive on and within the human body. One of the largest human-associated microbial habitats is the skin surface, which harbors large numbers of bacteria that can have important effects on health. We examined the palmar surfaces of the dominant and nondominant hands of 51 healthy young adult volunteers to characterize bacterial diversity on hands and to assess its variability within and between individuals. We used a novel pyrosequencing-based method that allowed us to survey hand surface bacterial communities at an unprecedented level of detail. The diversity of skin-associated bacterial communities was surprisingly high; a typical hand surface harbored >150 unique species-level bacterial phylotypes, and we identified a total of 4,742 unique phylotypes across all of the hands examined. Although there was a core set of bacterial taxa commonly found on the palm surface, we observed pronounced intra- and interpersonal variation in bacterial community composition: hands from the same individual shared only 17% of their phylotypes, with different individuals sharing only 13%. Women had significantly higher diversity than men, and community composition was significantly affected by handedness, time since last hand washing, and an individual's sex. The variation within and between individuals in microbial ecology illustrated by this study emphasizes the challenges inherent in defining what constitutes a \"healthy\" bacterial community; addressing these challenges will be critical for the International Human Microbiome Project.
Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient
Cyanobacteria are a key biotic component as primary producers in biocrusts, topsoil communities that have important roles in the functioning of drylands. Yet, major knowledge gaps exist regarding the composition of biocrust cyanobacterial diversity and distribution in Mediterranean ecosystems. We describe cyanobacterial diversity in Mediterranean semiarid soil crusts along an aridity gradient by using next-generation sequencing and bioinformatics analyses, and detect clear shifts along it in cyanobacterial dominance. Statistical analyses show that temperature and precipitation were major parameters determining cyanobacterial composition, suggesting the presence of differentiated climatic niches for distinct cyanobacteria. The responses to temperature of a set of cultivated, pedigreed strains representative of the field populations lend direct support to that contention, with psychrotolerant vs thermotolerant physiology being strain dependent, and consistent with their dominance along the natural gradient. Our results suggest a possible replacement, as global warming proceeds, of cool-adapted by warm-adapted nitrogen-fixing cyanobacteria (such as Scytonema) and a switch in the dominance of Microcoleus vaginatus by thermotolerant, novel phylotypes of bundle-forming cyanobacteria. These differential sensitivities of cyanobacteria to rising temperatures and decreasing precipitation, their ubiquity, and their low generation time point to their potential as bioindicators of global change.
Inducible Foxp3⁺ regulatory T-cell development by a commensal bacterium of the intestinal microbiota
To maintain intestinal health, the immune system must faithfully respond to antigens from pathogenic microbes while limiting reactions to self-molecules. The gastrointestinal tract represents a unique challenge to the immune system, as it is permanently colonized by a diverse amalgam of bacterial phylotypes producing multitudes of foreign microbial products. Evidence from human and animal studies indicates that inflammatory bowel disease results from uncontrolled inflammation to the intestinal microbiota. However, molecular mechanisms that actively promote mucosal tolerance to the microbiota remain unknown. We report herein that a prominent human commensal, Bacteroides fragilis, directs the development of Foxp3⁺ regulatory T cells (Tregs) with a unique \"inducible\" genetic signature. Monocolonization of germ-free animals with B. fragilis increases the suppressive capacity of Tregs and induces anti-inflammatory cytokine production exclusively from Foxp3⁺ T cells in the gut. We show that the immunomodulatory molecule, polysaccharide A (PSA), of B. fragilis mediates the conversion of CD4⁺ T cells into Foxp3⁺ Treg cells that produce IL-10 during commensal colonization. Functional Foxp3⁺ Treg cells are also produced by PSA during intestinal inflammation, and Toll-like receptor 2 signaling is required for both Treg induction and IL-10 expression. Most significantly, we show that PSA is not only able to prevent, but also cure experimental colitis in animals. Our results therefore demonstrate that B. fragilis co-opts the Treg lineage differentiation pathway in the gut to actively induce mucosal tolerance.