Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
385,191
result(s) for
"physical properties"
Sort by:
Microplastic effects on plants
by
Rillig, Matthias C.
,
de Souza Machado, A. Abel
,
Lehmann, Anika
in
Aquatic environment
,
Biota
,
botanical composition
2019
Microplastic effects in terrestrial ecosystems have recently moved into focus, after about a decade of research being limited to aquatic systems. While effects on soil physical properties and soil biota are starting to become apparent, there is not much information on the consequences for plant performance. We here propose and discuss mechanistic pathways through which microplastics could impact plant growth, either positively or negatively. These effects will vary as a function of plant species, and plastic type, and thus are likely to translate to changes in plant community composition and perhaps primary production. Our mechanistic framework serves to guide ongoing and future research on this important topic.
Journal Article
Effect of soil physical properties on soil infiltration rates
2022
The physical properties of the soil are studied to understand the influence of soil properties on infiltration rate. The effect of soil physical properties on infiltration rates on logged-over forests was measured with a mini-disk infiltrometer across various levels of soil disturbances. Results of soil analysis suggest are mostly loamy texture and the bulk density has varied from 0.74 - 1.02 g cm −3 , respectively. The basic infiltration rate has varied from a minimum of 0.61 mmhr −1 to a maximum of 45.22 mmhr −1 with an average of 3.81 mmhr −1 . The results of simple regression analyses showed that there was little association between the physical properties of the soil and the infiltration rate. This study suggests that the high variation of infiltration rate in this study site is attributed to the high spatial variability of soil properties.
Journal Article
Effect of super absorbent hydrogel on hydro-physical properties of soil under deficit irrigation
by
Mostafa, Harby
,
Abdelfattah, Ahmed
,
Abdelghafar, Rasha
in
631/449/2661
,
631/449/2668
,
Absorbents
2024
Due to water scarcity challenges, efficient management of irrigation water is becoming crucial. Water use efficiency (WUE) involves increasing crop productivity without increasing water consumption. This study was carried out to study the effect of hydrogel, deficit irrigation and soil type on WUE, soil hydro-physical properties and lettuce productivity. For this purpose, four irrigation treatments (100%, 85%, 70% and 60% of full irrigation requirements), four hydrogel concentrations (0, 0.1, 0.2 and 0.3% w/w) and three soil textural classes (clay, loamy sand, and sandy-clay soil) were conducted in pot experiment at open field during two consecutive seasons. The results revealed that crop growth parameters and soil hydro-physical properties were significantly affected by hydrogel application rates. Hydrogel addition significantly enhanced head fresh and dry weights, chlorophyll content, number of leaves and WUE. Application of hydrogel at 0.3% and 85% of irrigation requirements achieved the highest WUE without significant yield reductions. Changes in the studied hydro-physical properties of soil were more dependent on soil texture and hydrogel application rate than on the amount of irrigation water. The significant decrease in soil saturated hydraulic conductivity and bulk density confirms that super absorbent hydrogels could be recommended to improve soil water retention and enhance water use efficiency under deficit irrigation conditions.
Journal Article
Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis
by
Andres, Christian
,
Armengot, Laura
,
Niether, Wiebke
in
Adaptation
,
Agroforestry
,
Biodiversity
2020
Scientific knowledge, societal debates, and industry commitments around sustainable cocoa are increasing. Cocoa agroforestry systems are supposed to improve the sustainability of cocoa production. However, their combined agronomic, ecological, and socio-economic performance compared to monocultures is still largely unknown. Here we present a meta-analysis of 52 articles that directly compared cocoa agroforestry systems and monocultures. Using an inductive, multi-dimensional approach, we analyzed the differences in cocoa and total system yield, economic performance, soil chemical and physical properties, incidence of pests and diseases, potential for climate change mitigation and adaptation, and biodiversity conservation. Cocoa agroforestry systems outcompeted monocultures in most indicators. Cocoa yields in agroforestry systems were 25% lower than in monocultures, but total system yields were about ten times higher, contributing to food security and diversified incomes. This finding was supported by a similar profitability of both production systems. Cocoa agroforestry contributed to climate change mitigation by storing 2.5 times more carbon and to adaptation by lowering mean temperatures and buffering temperature extremes. We found no significant differences in relation to the main soil parameters. The effect of the type of production system on disease incidence depended on the fungal species. The few available studies comparing biodiversity showed a higher biodiversity in cocoa agroforestry systems. Increased and specific knowledge on local tree selections and local socio-economic and environmental conditions, as well as building and enabling alternative markets for agroforestry products, could contribute to further adoption and sustainability of cocoa agroforestry systems.
Journal Article
Polyester microplastic fibers in soil increase nitrogen loss via leaching and decrease plant biomass production and N uptake
by
Iovino, Massimo
,
Frenda, Alfonso S
,
Amato, Gaetano
in
Agricultural ecosystems
,
agroecosystem sustainability
,
Climate change
2022
Microplastic contamination, like other global change factors, can induce effects on ecosystem functions and processes, affecting various soil biophysical properties. However, effects of such contaminants on nutrient cycles in agroecosystems are still poorly understood. We here performed two pot experiments to investigate the effect of polyester microplastic fibers (PMFs) on soil physical properties, nitrogen cycle, and plant performance in a maize-based agroecosystem. Moreover, we followed the N loss via leaching in soil contaminated or not with PMFs by simulating heavy rainfall events that mimic a future scenario of climate change. Our results show that soil contaminated with PMFs (at a concentration of 0.5% w/w) can jeopardize agroecosystem sustainability by affecting soil physical properties and in particular soil macro- and microporosity, the nitrogen cycle, and plant performance. In particular, we found that soil PMF contamination limited crop growth and N uptake by circa 30%, and consequently increased N loss via leaching. Overall, our findings show that soil contamination with PMFs may pose problems to future agricultural challenges like food security and environmental protection.
Journal Article
Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China
by
Liu, Wuren
,
Zheng, Hongbing
,
Li, Ruiping
in
Aggregates
,
Agricultural practices
,
Agricultural research
2018
Soil tillage can affect the stability and formation of soil aggregates by disrupting soil structure. Frequent tillage deteriorates soil structure and weakens soil aggregates, causing them to be susceptible to decay. Different types of tillage systems affect soil physical properties and organic matter content, in turn influencing the formation of aggregates. The objective of this study was to evaluate the effect of long-term tillage on soil aggregates and aggregate-associated carbon in a black soil of Northeast China and to identify the optimal conservation tillage in this system. This research was conducted on a long-term tillage experimental field established in 1983 at the Jilin Academy of Agricultural Sciences, Gongzhuling, China. Plots were treated with four tillage systems including no tillage (NT), spacing tillage (ST), moldboard plowing (MP), and conventional tillage (CT). We took samples every 10cm from 0-60cm depth and demonstrated that water-stable soil aggregates >0.25mm in diameter accounted for over 66.0% of total aggregates for all tillage treatments, and the percentage for the ST treatment was 34.5% higher than in the other treatments. The NT treatment had the highest effect at 0-10cm depth, while the effect for the ST treatment was highest at 0-30cm. SOC storage decreased with soil depth, with a significant accumulation at 0-20cm depth. Across treatments, aggregate-associated C at a depth of 0-10cm was higher in the NT and ST treatments than in the MP and CT treatments. The advantage of the NT treatment weakened with soil depth, while the amount of aggregate-associated C remained higher for the ST treatment. There were more macro-aggregates in the ST and NT treatments than in the MP and CT treatments, while the MP and CT treatments had more micro-aggregates. The sum of macro-aggregate contributing rates for soil organic C (SOC) was significantly superior to that of the micro-aggregates. Water-stable aggregates increased by 34.5% in the ST treatment, effectively improving the soil structure. Furthermore, 0.25-1.00 and 1-2mm aggregates had the highest SOC storage and responded rapidly to the various tillage treatments. Hence, they can serve as indicators for the long-term influence of different tillage treatments on the distribution of aggregates and SOC.
Journal Article
Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate
Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin.
Journal Article
Heavy metals and soil microbes
by
Abdu, Nafiu
,
Abdulkadir, Aisha
,
Abdullahi, Aliyu A.
in
Analytical Chemistry
,
animals
,
anthropogenic activities
2017
Heavy metal pollution is a global issue due to health risks associated with metal contamination. Although many metals are essential for life, they can be harmful to man, animal, plant and microorganisms at toxic levels. Occurrence of heavy metals in soil is mainly attributed to natural weathering of metal-rich parent material and anthropogenic activities such as industrial, mining, agricultural activities. Here we review the effect of soil microbes on the biosorption and bioavailability of heavy metals; the mechanisms of heavy metals sequestration by plant and microbes; and the effects of pollution on soil microbial diversity and activities. The major points are: anthropogenic activities constitute the major source of heavy metals in the environment. Soil chemistry is the major determinant of metal solubility, movement and availability in the soil. High levels of heavy metals in living tissues cause severe organ impairment, neurological disorders and eventual death. Elevated levels of heavy metals in soils decrease microbial population, diversity and activities. Nonetheless, certain soil microbes tolerate and use heavy metals in their systems; as such they are used for bioremediation of polluted soils. Soil microbes can be used for remediation of contaminated soils either directly or by making heavy metals bioavailable in the rhizosphere of plants. Such plants can accumulate 100 mg g
−1
Cd and As; 1000 mg g
−1
Co, Cu, Cr, Ni and 10,000 mg g
−1
Pb, Mn and Ni; and translocate metals to harvestable parts. Microbial activity changes soil physical properties such as soil structure and biochemical properties such as pH, soil redox state, soil enzymes that influence the solubility and bioavailability of heavy metals. The concept of ecological dose (ED
50
) and lethal concentration (LC
50
) was developed in response to the need to easily quantify the influence of pollutants on microbial-mediated ecological processes in various ecosystems.
Journal Article
A review of different working fluids used in the receiver tube of parabolic trough solar collector
by
Mallik, Ramesh Kumar
,
Sarangi, Abhisek
,
Ray, Subhankar
in
Absorbers
,
Air pollution
,
Alternative energy sources
2023
Parabolic trough solar collectors (PTSCs) or parabolic trough collectors have caught the interest of scientists and renewable energy enthusiasts due to their wide range of operating temperatures between 100 and 700 °C and their potential for power production as well as industrial process heating. More PTSCs have been constructed than all other concentrated sun-producing apparatuses put together. One of the most important functional components of the PTSC is the space for heat collection, also known as the absorber tube and transporting fluids. To increase its thermal potential, numerous investigations on the fluids in the absorber tube flow have been conducted. Better fluid thermo-physical properties are required to improve heat transfer and the system's overall efficiency. Examining different heat transfer fluids (HTF) that have been used for PTSC absorber tube/receiver tube is the goal of the current review. The usage of novel HTFs like nanofluids is also investigated, along with conventional fluids like thermic fluid and water. Review of the performance of the PTSC with various fluids using experiments and numerical methods are presented.. There are many difficulties with once-through PTSCs since two-phase flow circumstances make them worse and can occasionally cause tube bending. Summarized comparisons of several studies looking at the stability, manufacturing methods, and effects of hybrid nanofluids on PTSC thermal properties are summarized. For HTF inside the absorber tube, hybrid nanofluids and nanofluids may be used to enhance the thermal and optical characteristics of PTSC. It also demonstrates that metal oxide hybrid nanofluids are discovered to be more successful and efficient in enhancing thermal conductivity causing heat transfer augmentation than oxide nanofluids. This research, in our opinion, will encourage scientists and manufacturers to choose appropriate working fluids for PTSC applications.
Journal Article
The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils
by
Gnatowski, Tomasz
,
Aghalarov, Rufat
,
Szatyłowicz, Jan
in
Biological activity
,
Carbon dioxide
,
Carbon dioxide emissions
2018
The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO2 efflux data. The obtained results show that CO2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO2 efflux. The non-linear relationship between soil moisture content and CO2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.
Journal Article