Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "physics-guided neural network (PGNN)"
Sort by:
Physics-Guided Long Short-Term Memory Network for Streamflow and Flood Simulations in the Lancang–Mekong River Basin
A warming climate will intensify the water cycle, resulting in an exacerbation of water resources crises and flooding risks in the Lancang–Mekong River Basin (LMRB). The mitigation of these risks requires accurate streamflow and flood simulations. Process-based and data-driven hydrological models are the two major approaches for streamflow simulations, while a hybrid of these two methods promises advantageous prediction accuracy. In this study, we developed a hybrid physics-data (HPD) methodology for streamflow and flood prediction under the physics-guided neural network modeling framework. The HPD methodology leveraged simulation information from a process-based model (i.e., VIC-CaMa-Flood) along with the meteorological forcing information (precipitation, maximum temperature, minimum temperature, and wind speed) to simulate the daily streamflow series and flood events, using a long short-term memory (LSTM) neural network. This HPD methodology outperformed the pure process-based VIC-CaMa-Flood model or the pure observational data driven LSTM model by a large margin, suggesting the usefulness of introducing physical regularization in data-driven modeling, and the necessity of observation-informed bias correction for process-based models. We further developed a gradient boosting tree method to measure the information contribution from the process-based model simulation and the meteorological forcing data in our HPD methodology. The results show that the process-based model simulation contributes about 30% to the HPD outcome, outweighing the information contribution from each of the meteorological forcing variables (<20%). Our HPD methodology inherited the physical mechanisms of the process-based model, and the high predictability capability of the LSTM model, offering a novel way for making use of incomplete physical understanding, and insufficient data, to enhance streamflow and flood predictions.
Physics Guided Neural Networks with Knowledge Graph
Over the past few decades, machine learning (ML) has demonstrated significant advancements in all areas of human existence. Machine learning and deep learning models rely heavily on data. Typically, basic machine learning (ML) and deep learning (DL) models receive input data and its matching output. Within the model, these models generate rules. In a physics-guided model, input and output rules are provided to optimize the model’s learning, hence enhancing the model’s loss optimization. The concept of the physics-guided neural network (PGNN) is becoming increasingly popular among researchers and industry professionals. It has been applied in numerous fields such as healthcare, medicine, environmental science, and control systems. This review was conducted using four specific research questions. We obtained papers from six different sources and reviewed a total of 81 papers, based on the selected keywords. In addition, we have specifically addressed the difficulties and potential advantages of the PGNN. Our intention is for this review to provide guidance for aspiring researchers seeking to obtain a deeper understanding of the PGNN.
Physics-Guided Inverse Regression for Crop Quality Assessment
We present an innovative approach leveraging Physics-Guided Neural Networks (PGNNs) for enhancing agricultural quality assessments. Central to our methodology is the application of physics-guided inverse regression, a technique that significantly improves the model’s ability to precisely predict quality metrics of crops. This approach directly addresses the challenges of scalability, speed, and practicality that traditional assessment methods face. By integrating physical principles, notably Fick’s second law of diffusion, into neural network architectures, our developed PGNN model achieves a notable advancement in enhancing both the interpretability and accuracy of assessments. Empirical validation conducted on cucumbers and mushrooms demonstrates the superior capability of our model in outperforming conventional computer vision techniques in postharvest quality evaluation. This underscores our contribution as a scalable and efficient solution to the pressing demands of global food supply challenges.