Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
10,350 result(s) for "physiological state"
Sort by:
Bacteriophage production processes
High quantities of bacteriophages are currently used in the food industry and agriculture. However, growing antibiotic resistance of bacteria has recently awakened the interest to use bacteriophages for the treatment of bacterial infections in humans indicating that even higher quantities will be required in the future. High demand combined with a wide range of applications requires also efficient bacteriophage production processes operating at low production costs and with high productivity. To achieve this goal, different approaches were introduced and extensive studies of various parameters affecting bacteriophage formation were investigated. In this mini-review, we provide a short overview about different operation modes of bacteriophage production such as batch, semi-continuous and especially continuous with the pros and cons of each. We present factors affecting bacterial physiological state, its effect on phage formation and provide a description of methods for determination of bacteriophage growth parameters, through which bacteriophage formation is obtained. Understanding of described phenomena and inclusion of potential occurrence of mutations and selection in continuous systems enables evaluation of continuous process productivity and its optimization.
Paradise falls : the true story of an environmental catastrophe
Lois Gibbs, Luella Kenny, and Barbara Quimby thought they had found a slice of the American dream when they and their families moved onto the quiet streets of Love Canal, a picturesque middle-class hamlet by Niagara Falls in the winter of 1977, the town had record snowfalls, and in the spring, rains filled the earth with water like a sponge and the basements of the neighbourhood's homes with a pungent odour. It was the sweet, synthetic smell of chemicals. Then, one by one, the children of the more than 800 families that made Love Canal their home started getting very sick. In this propulsive work of narrative reportage, Keith O'Brien uncovers how Lois, Luella, Barbara and other local mothers uncovered the poisonous secret of Love Canal - that they were living on the site where industrial employer Hooker Chemical had been dumping toxic waste for years, and covering it up.
Determination of bacteriophage growth parameters under cultivating conditions
The determination of bacteriophage growth parameters, such as adsorption constant, latent period, and burst size, is essential for the proper design of bacteriophage production and the estimation of the efficacy of bacteriophage therapy. As they are dependent on the physiological state and cultivation conditions bacteria, they should be preferably determined in a non-invasive way. We propose a method that allows their determination under cultivation conditions. It is based on the cultivation of bacteria in a chemostat, the injection of bacteriophages, and monitoring of their concentration over a certain period. Phage growth parameters are determined by fitting a mathematical model to experimental data. E. coli–T4 system was investigated for various dilution rates covering a broad range of bacteria physiological states. Results were used for a prediction of bacteriophages and bacteria steady-state concentrations in a cellstat. A close match was found when adsorption of bacteriophages to the lysed cells was considered in the cellstat, while this mechanism can be neglected in the chemostat. Trends and values for burst size and latent period were consistent with literature data, demonstrating an increase in the burst size and decrease of the latent period with an increase of bacteria-specific growth rate (from 19 to 81 bacteriophage particles per cell and 89 to 29.8 min for a specific growth rate between 0.072 and 0.96 h−1, respectively). Adsorption constant also showed an increase with a specific growth rate increase (from 2.8E-10 to 4.0E-09 mL min−1), in contrast to chemostat literature data, probably due to its determination within the bioreactor. The proposed method also allowed estimation of latent period distribution. While its value for high-specific growth rates was determined to be constant of around 6 min, an increase of over an order of magnitude was found for the lowest specific growth rate, probably as a consequence of higher variability within bacteria population.Key Points• A method for determination of phage growth parameters under cultivating conditions was developed.• The method was successfully tested on E. coli and T4 bacteriophage system comparing chemostat and cellstat values.• Adsorption to lysed cells was found to be important for cellstat experiment but can be neglected in the chemostat.• The determined burst size and latent period dependence on the bacterial physiological state was consistent with literature data, while differences were found for adsorption constant.• Latent period distribution significantly increases for low bacteria–specific growth rates.
Physiological Assessment of the Health and Welfare of Domestic Cats—An Exploration of Factors Affecting Urinary Cortisol and Oxytocin
Physiological samples are beneficial in assessing the health and welfare of cats. However, most studies have been conducted in specialized environments, such as shelters or laboratories, and have not focused on cats living in domestic settings. In addition, most studies have assessed physiological stress states in cats based on cortisol, and none have quantified positive indicators, such as oxytocin. Here, we collected urine samples from 49 domestic cats and quantified urinary cortisol, oxytocin, and creatinine using ELISA. To identify factors influencing hormone levels, owners responded to questionnaires regarding their housing environment, individual cat information, and the frequency of daily interactions with their cats. Using principal component analysis, principal component scores for daily interactions were extracted. These results showed that the frequency of tactile and auditory signal-based communication by owners was positively correlated with the mean concentration of oxytocin in the urine. Additionally, this communication was more frequent in younger cats or cats that had experienced a shorter length of cohabitation with the owner. However, no factors associated with urinary cortisol concentration were identified. Our study indicates that interactions and relationships with the owner influence the physiological status of cats and suggests that oxytocin is a valuable parameter for assessing their health and welfare.
A Plant’s Electrical Parameters Indicate Its Physiological State: A Study of Intracellular Water Metabolism
Almost all of a plant’s life activities involve electrochemical reactions. Plant electrical parameters respond quickly to environmental changes and are closely related to physiological activities. In this study, the theoretical intrinsic relationships between clamping force and leaf impedance (Z) or capacitive reactance (Xc) and capacitance (C) were revealed as 3-parameter exponential decay and linear models based on bioenergetics, respectively, for the first time. Leaf electrical characteristics including intrinsic impedance (IZ), capacitive reactance (IXc), capacitance (IC) and specific effective thickness (d) were successfully detected using the above-mentioned relationships and were used to manifest plant metabolic activity. The intracellular water-holding capacity (IWHC), water-use efficiency (IWUE), water-holding time (IWHT) and water transfer rate (WTR) of plant leaves were defined on the basis of IZ, IXc, IC and d, and applied to reflect the intracellular water metabolism. The results demonstrated that the leaves of Broussonetia papyrifera plants grown in agricultural soil had higher IC, d, IWHC, WTR, water content values and lower IZ, IXc values than those grown in moderately rocky desertified soil. The leaf IC, d, IWHC, WTR and water content values of herbaceous plants were higher than those of woody plants. Solanum tuberosum L. had higher leaf IC, d, IWHC and WTR values, but exhibited lower IZ, IXc, IWUE and IWHT values than Capsicum annuum L. This study highlighted that a plant’s electrical parameters based on bioenergetics clearly indicate its physiological process—e.g., the intracellular water metabolism.
Functional Responses of Bacterioplankton Diversity and Metabolism to Experimental Bottom-Up and Top-Down Forcings
We conducted an experimental approach using microcosms to simultaneously examine the functional response of natural freshwater bacterial assemblages to the impact of resources (nutrients) and top-down factors (viruses and grazers) on bacterial physiological state and their community structure. Addition of organic and inorganic nutrients led to the proliferation of high nucleic acid content bacterial cells accompanied by high bacterial growth efficiency (considered as proxy of bacterial carbon metabolism) estimates, suggesting that this subgroup represented the most active fraction of bacterial community and had a high capacity to incorporate carbon into its biomass. However, their rapid growth induced the pressure of viral lytic infection which led to their lysis toward the end of the experiment. In microcosms with flagellates plus viruses, and with viruses alone, the selective removal of metabolically active high nucleic acid cells through viral lysis benefitted the less active low nucleic acid content cells, perhaps via the use of lysis products for its growth and survival. Changes in bacterial physiological state in microcosms were reflected in their community structure which was examined using 16S ribosomal RNA (rRNA) gene sequencing by Illumina’s Miseq platform. Chao estimator and Shannon diversity index values suggested that bacterial species richness was highest in the presence of both the top-down factors, indicating a tighter control of bacterioplankton dominants within a relatively stable bacterial community. The increase in bacterial metabolism with nutrient addition followed by subsequent lysis of bacterial dominants indicate that both resources and top-down factors work in concert for the sustenance of stable bacterial communities.
Wax biosynthesis in response to danger
The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UVradiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses.
Heightened Expectations
Heightened Expectations is a groundbreaking history that illuminates the foundations of the multibillion-dollar human growth hormone (HGH) industry. Drawing on medical and public health histories as well as on photography, film, music, prose, and other examples from popular culture, Aimee Medeiros tracks how the stigmatization of short stature in boys and growth hormone technology came together in the twentieth century.   This book documents how the rise of modern capitalism and efforts to protect those most vulnerable to its harmful effects contributed to the social stigmatization of short statured children. Short boys bore the brunt of this discrimination by the mid-twentieth century, as cultural notions of masculinity deemed smallness a troubling trait in need of remedy. These boys became targets of growth hormone treatment, a trend accelerated by the development of effective HGH therapy in the late 1950s.   With a revisionist twist, Medeiros argues that HGH therapy was not plagued by a limited number of sources of the hormone but rather a difficult-to-access supply during the 1960s and 1970s. The advent of synthetic HGH remedied this situation. Therapy was available, however, only to those who could afford it. Very few could, which made short stature once again a mark of the underprivileged class.   Today, small boys with dreams of being taller remain the key customer base of the legitimate arm of the HGH industry. As gender and economic class disparities in treatment continue, some medical experts have alluded to patients’ parents as culprits of this trend. This book sheds light on how medicine’s attempt to make up for perceived physical shortcomings has deep roots in American culture.   Of interest to historians and scholars of medicine, gender studies, and disability studies, Heightened Expectations also offers much to policy makers and those curious about where standards and therapies originate. 
Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture
Remote sensing is a useful tool for monitoring spatio-temporal variations of crop morphological and physiological status and supporting practices in precision farming. In comparison with multispectral imaging, hyperspectral imaging is a more advanced technique that is capable of acquiring a detailed spectral response of target features. Due to limited accessibility outside of the scientific community, hyperspectral images have not been widely used in precision agriculture. In recent years, different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall Micro-Hyperspec, Cubert UHD 185-Firefly) have been developed, and advanced spaceborne hyperspectral sensors have also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI). Hyperspectral imaging is becoming more widely available to agricultural applications. Meanwhile, the acquisition, processing, and analysis of hyperspectral imagery still remain a challenging research topic (e.g., large data volume, high data dimensionality, and complex information analysis). It is hence beneficial to conduct a thorough and in-depth review of the hyperspectral imaging technology (e.g., different platforms and sensors), methods available for processing and analyzing hyperspectral information, and recent advances of hyperspectral imaging in agricultural applications. Publications over the past 30 years in hyperspectral imaging technology and applications in agriculture were thus reviewed. The imaging platforms and sensors, together with analytic methods used in the literature, were discussed. Performances of hyperspectral imaging for different applications (e.g., crop biophysical and biochemical properties’ mapping, soil characteristics, and crop classification) were also evaluated. This review is intended to assist agricultural researchers and practitioners to better understand the strengths and limitations of hyperspectral imaging to agricultural applications and promote the adoption of this valuable technology. Recommendations for future hyperspectral imaging research for precision agriculture are also presented.