Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"pine cone movement"
Sort by:
The Structural and Mechanical Basis for Passive‐Hydraulic Pine Cone Actuation
by
Thierer, Rebecca
,
Eger, Carmen J.
,
Sachse, Renate
in
Contact angle
,
Environmental conditions
,
Equilibrium
2022
The opening and closing of pine cones is based on the hygroscopic behavior of the individual seed scales around the cone axis, which bend passively in response to changes in environmental humidity. Although prior studies suggest a bilayer architecture consisting of lower actuating (swellable) sclereid and upper restrictive (non‐ or lesser swellable) sclerenchymatous fiber tissue layers to be the structural basis of this behavior, the exact mechanism of how humidity changes are translated into global movement are still unclear. Here, the mechanical and hydraulic properties of each structural component of the scale are investigated to get a holistic picture of their functional interplay. Measurements of the wetting behavior, water uptake, and mechanical measurements are used to analyze the influence of hydration on the different tissues of the cone scales. Furthermore, their dimensional changes during actuation are measured by comparative micro‐computed tomography (µ‐CT) investigations of dry and wet scales, which are corroborated and extended by 3D‐digital image correlation‐based displacement and strain analyses, biomechanical testing of actuation force, and finite element simulations. Altogether, a model allowing a detailed mechanistic understanding of pine cone actuation is developed, which is a prime concept generator for the development of biomimetic hygromorphic systems.
This contribution describes the hygroscopic opening and closing mechanism of pine cones in terms of mechanical and hydraulic properties of the individual seed scales. Through a combination of mechanical, structural, and chemical analyses, a mechanistic model of pine cone actuation and hydraulics is proposed.
Journal Article
Orchestrated Movement Sequences and Shape-Memory-like Effects in Pine Cones
by
Poppinga, Simon
,
Horstmann, Martin
,
Speck, Thomas
in
Actuators
,
bilayer actuation
,
Biomechanics
2024
Hygroscopic seed-scale movement is responsible for the weather-adaptive opening and closing of pine cones and for facilitating seed dispersal under favorable environmental conditions. Although this phenomenon has long been investigated, many involved processes are still not fully understood. To gain a deeper mechanical and structural understanding of the cone and its functional units, namely the individual seed scales, we have investigated their desiccation- and wetting-induced movement processes in a series of analyses and manipulative experiments. We found, for example, that the abaxial scale surface is responsible for the evaporation of water from the closed cone and subsequent cone opening. Furthermore, we tested the capability of dry and deformed scales to restore their original shape and biomechanical properties by wetting. These results shed new light on the orchestration of scale movement in cones and the involved forces and provide information about the functional robustness and resilience of cones, leading to a better understanding of the mechanisms behind hygroscopic pine cone opening, the respective ecological framework, and, possibly, to the development of smart biomimetic actuators.
Journal Article
The cracking of Scots pine (Pinus sylvestris) cones
2022
Pine cones show functionally highly resilient, hygroscopically actuated opening and closing movements, which are repeatable and function even in millions of years old, coalified cones. Although the functional morphology and biomechanics behind the individual seed scale motions are well understood, the initial opening of the cone, which is often accompanied by an audible cracking noise, is not. We therefore investigated the initial opening events of mature fresh cones of Scots pine (
Pinus sylvestris
) and their subsequent motion patterns. Using high-speed and time lapse videography, 3D digital image correlation techniques, force measurements, thermographic and chemical-rheological resin analyses, we are able to draw a holistic picture of the initial opening process involving the rupture of resin seals and very fast seed scale motion in the millisecond regime. The rapid cone opening was not accompanied by immediate seed release in our experiments and, therefore, cannot be assigned to ballistochory. As the involved passive hydraulic-elastic processes in cracking are very fine-tuned, we hypothesize that they are under tight mechanical-structural control to ensure an ecologically optimized seed release upon environmental conditions suitable for wind dispersal. In this context, we propose an interplay of humidity and temperature to be the external “drivers” for the initial cone opening, in which resin works as a crucial chemical-mechanical latch system.
Journal Article
Spatio-temporal variability in debris-flow activity: a tree-ring study at Geisstriftbach (Swiss Alps) extending back to AD 1736
2010
Past debris-flow activity on the forested cone of the Geisstriftbach torrent (St. Niklaus, Valais, Swiss Alps) was assessed from growth disturbances in old conifer trees, providing a much improved record of past events. The study of 633 tree-ring sequences sampled from 252 European larch (
Larix decidua
Mill.), Norway spruce (
Picea abies
(L.) Karst.) and Silver birch (
Betula pendula
Roth.) trees allowed reconstruction of 53 debris-flow events since AD 1736. The spatial analysis of trees affected during particular events on the geomorphic map allowed for a spatial representation of individual events and a reconstruction of four flow patterns. Based on our results and Siegfried maps, we believe that before the formation of a dogleg near the cone apex in the late 1890s, debris flows preferentially used the channels located in the west-southwestern part of the Geisstriftbach cone. This study contributes to our understanding of debris-flow processes on cones and provides an example of how dendrogeomorphic techniques may help in the reconstruction and understanding of debris flows in Alpine areas.
Journal Article