Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
794 result(s) for "pit structure"
Sort by:
Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer
• Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic ‘noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light, scanning and transmission electron microscopy of seven Acer taxa, and compared these observations with empirical measures of xylem hydraulics. • Our results reveal a 2 MPa range in species' mean cavitation pressure (MCP). MCP was strongly correlated with intervessel pit structure (membrane thickness and porosity, chamber depth), weakly correlated with pit number per vessel, and not related to pit area per vessel. At the tissue level, there was a strong correlation between MCP and mechanical strength parameters, and some of the first evidence is provided for the functional significance of vessel grouping and thickenings on inner vessel walls. In addition, a strong trade-off was observed between xylem-specific conductivity and MCP. Vessel length and intervessel wall characteristics were implicated in this safety-efficiency trade-off. • Cavitation resistance and hydraulic conductivity in Acer appear to be controlled by a very complex interaction between tissue, vessel network and pit characteristics.
Analysis of the Influence of Different Bionic Structures on the Noise Reduction Performance of the Centrifugal Pump
The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude-frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.
Conflicting functional effects of xylem pit structure relate to the growth-longevity trade-off in a conifer species
Consistent with a ubiquitous life history trade-off, trees exhibit a negative relationship between growth and longevity both among and within species. However, the mechanistic basis of this life history trade-off is not well understood. In addition to resource allocation conflicts among multiple traits, functional conflicts arising from individual morphological traits may also contribute to life history trade-offs. We hypothesized that conflicting functional effects of xylem structural traits contribute to the growth-longevity trade-off in trees. We tested this hypothesis by examining the extent to which xylem morphological traits (i.e., wood density, tracheid diameters, and pit structure) relate to growth rates and longevity in two natural populations of the conifer species Pinus ponderosa. Hydraulic constraints arise as trees grow larger and xylem anatomical traits adjust to compensate. We disentangled the effects of size through ontogeny in individual trees and growth rates among trees on xylem traits by sampling each tree at multiple trunk diameters. We found that the oldest trees had slower lifetime growth rates compared with younger trees in the studied populations, indicating a growth-longevity trade-off. We further provide evidence that a single xylem trait, pit structure, with conflicting effects on xylem function (hydraulic safety and efficiency) relates to the growth-longevity trade-off in a conifer species. This study highlights that, in addition to trade-offs among multiple traits, functional constraints based on individual morphological traits like that of pit structure provide mechanistic insight into how and when life history trade-offs arise.
Water Transport Characteristics of Multiple Structures of Xylem Vessels in Magnolia
The multiple structures of xylem vessels in Magnolia provide stable and efficient water transport channels. The structural parameters of xylem vessels were studied in wood sections and in macerated materials. The results showed that the xylem vessels of Magnolia contained a helical thickening structure and a pit structure of a secondary wall, and the end walls had a scalariform perforation plate. The helical thickening and scalariform perforation plate increased the flow resistance of the vessel, and the pit structure decreased the flow resistance of the vessel. There was a close positive correlation between the flow resistance of the vessels and the helical width, the helical height, the thickness of the scalariform perforation plate, the number of holes in the scalariform perforation plate, the length of the pit canal, and the pit spacing. In addition, there was a negative correlation between the flow resistance of the vessels and the helical spacing, the pit vertical diameter, and the pit domain length. Among these structural parameters, the helical height, the number of holes, and the length of pit canal had a greater influence on the flow resistance. The pit structure caused the vessel to produce radial water transport. The radial transmission efficiency increased with the increase in the pit domain length. With no pit membrane in the pit structure of Magnolia, the radial transmission efficiency would be between 43.99% and 53.21%.
Early Pueblo Pit Structure Architectural Practice in the Chuska Valley, New Mexico
This paper analyzes pit structure architectural practice in the Chuska Valley, New Mexico and investigates the scale and kinds of interactions among early Pueblo groups with emphasis on the communication of identity through architecture. The paper examines a sample of structures dating to the Basketmaker III and Pueblo I periods. Viewing pit structure architecture through the lens of the communities of practice approach, I contend early Pueblo Chuska Valley pit house communities had a certain way of designing and constructing architecture and using internal main chamber space that community members perpetuated intergenerationally through continual practice. This research demonstrated that pit structure practice in the Chuska Valley during the early Pueblo period represents a community of practice local to the Chuska Valley and Chaco Plateau. Architectural similarities and trade of material culture between the Chuskan and Chaco regions suggest strong ties related to shared communities of practices and possibly sociocultural identities.
Intervascular Pit Membranes with a Torus in the Wood of Ulmus (Ulmaceae) and Related Genera
• The distribution of intervascular pit membranes with a torus was investigated in juvenile wood samples of 19 species of Ulmus and seven related genera. • A staining solution of safranin and alcian blue (35: 65) was recommended to distinguish torus-bearing pit membranes using light microscopy. • Intervascular pit membranes connecting relatively wide vessel elements resembled those of most angiosperms, as they were of uniform thickness. By contrast, bordered pit pairs with round to oval pit apertures and indistinct pit canals that connected narrow (incomplete) vessel elements or vascular tracheids with distinct helical thickenings were frequently characterized by a torus in ring-porous wood samples of Ulmus and Zelkova. Tori were lacking in diffuse-porous species of Ampelocera, Aphananthe, Gironniera, Holoptelea, Phyllostylon, Trema and Ulmus. • Our observations suggest that tori are more common in cold temperate climates than in warm (sub)tropical environments. This may indicate that narrow tracheary elements with torus-bearing pit membranes provide an auxiliary conducting system which is of low conductivity, but offers greater resistance to freezing-induced cavitation.
Ensuring the stability of the deep pit enclosure and foundation bases in the conditions of reconstruction of the architectural monument in the city of Kazan
Technical solutions for the reconstruction of the building of the Shamovskaya Hospital, an architectural monument built in 1907-1910, are highlighted in Kazan. The reconstruction involves the construction of a 4- storey underground extension to the building. The implementation of the developed architectural solutions revealed a number of problems associated with ensuring the stability of the foundation when developing a deep pit in the immediate (0.5 m) proximity to the building. The authors propose technical solutions to strengthen the foundations of the existing building of the Shamovskaya Hospital, as well as the structure of the retaining wall.
Multi-View Analysis of High-Resolution Geomorphic Features in Complex Mountains Based on UAV–LiDAR and SfM–MVS: A Case Study of the Northern Pit Rim Structure of the Mountains of Lufeng, China
Unmanned aerial vehicles (UAVs) and light detection and ranging (LiDAR) can be used to analyze the geomorphic features in complex plateau mountains. Accordingly, a UAV–LiDAR system was adopted in this study to acquire images and lidar point-cloud dataset in the annular structure of Lufeng, Yunnan. A three-dimensional (3D) model was constructed based on structure from motion and multi-view stereo (SfM–MVS) in combination with a high-resolution digital elevation model (DEM). Geomorphic identification, measurement, and analysis were conducted using integrated visual interpretation, DEM visualization, and geographic information system (GIS) topographic feature extraction. The results indicated that the 3D geomorphological visualization and mapping were based on DEM, which was employed to identify the dividing lines and ridges that were delineated of the pit rim structure. The high-resolution DEM retained more geomorphic detail information, and the topography and the variation between ridges were analyzed in depth. The catchment and ponding areas were analyzed using accurate morphological parameters through a multi-angle 3D visualization. The slope, aspect, and topographic wetness index (TWI) parameters were analyzed through mathematical statistics to qualitatively and accurately analyze the differences between different ridges. This study highlighted the significance of the UAV–LiDAR high-resolution topographic measurements and the SfM–MVS 3D scene modelling in accurately identifying geomorphological features and conducting refined analysis. An effective framework was established to acquire high-precision topographic datasets and to analyze geomorphological features in complex mountain areas, which was beneficial in deepening the research on numerical simulation analysis of geomorphological features and reveal the process evolution mechanism.
A Basic Study on Shock Resistant Design for Explosion Pit
The mechanism of damage on the structure of an explosion pit which belongs to the Institute of Pulsed Power Science, Kumamoto University is investigated. Investigated is the mechanism of damage on the structure of an explosion pit which belongs to the Institute of Pulsed Power Science, Kumamoto University. Here, three-dimensional model with square opening (door) is used to simulate by numerical simulation. The numerical result with the actual egg-type model implies that firstly the cracks occurred at the corners of the door and grew larger. In addition, the numerically simulated results with a spherical form model are also demonstrated to study on optimizing the design of an explosion pit.
The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest
We reviewed studies dealing with regeneration under variable conditions in boreal and hemiboreal forests as affected by different microsite types by tree species functional groups. Generally, the importance of storm-induced microsites for regeneration dynamics in boreal forests depends on several factors: (1) distribution and type of microsites (generated by storm characteristics and stand conditions); (2) viable seed supply (stand history, species dispersal traits and status of surviving trees) and their species' life history strategy; (3) climatic and site conditions (pre-storm conditions and storm-induced changes); and (4) delayed storm effects, such as retarded falling of trees, favoured vegetation growth, etc. Studies acknowledging the significance of microsites were mostly related to intermediate or severe events, causing sufficient changes in resource levels and growth conditions, and influencing extrinsic factors such as frost heaving, erosion and browsing. Also, the dispersal traits of available tree species, including sprouting and response of surviving trees, such as canopy expansion, should be considered in evaluating microsite importance in individual cases. In intermediate to severe windstorm events, pioneer species are generally profiting most from the additional offer in microsites, requiring bare mineral soil and elevated locations for their establishment and growth. Under gap dynamics, shade-tolerant species benefit from dead wood and elevated locations as these offer safe sites in stands with abundant understorey vegetation.