Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
57 result(s) for "planktivorous"
Sort by:
Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon
Climate change projections indicate increased precipitation in northern Europe, leading to increased inflow of allochthonous organic matter to aquatic systems. The food web responses are poorly known, and may differ depending on the trophic structure. We performed an experimental mesocosm study where effects of labile dissolved organic carbon (DOC) on two different pelagic food webs were investigated, one having zooplankton as highest trophic level and the other with planktivorous fish as top consumer. In both food webs, DOC caused higher bacterial production and lower food web efficiency, i.e., energy transfer efficiency from the base to the top of the food web. However, the top-level response to DOC addition differed in the zooplankton and the fish systems. The zooplankton production increased due to efficient channeling of energy via both the bacterial and the phytoplankton pathway, while the fish production decreased due to channeling of energy mainly via the longer and less efficient bacterial pathway. We conclude that the added DOC either acted as a subsidy by increasing the production of the top trophic level (mesozooplankton), or as a sink causing decreased top consumer production (planktivorous fish).
Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy
Microplastic particles (MP) contaminate oceans and affect marine organisms in several ways. Ingestion combined with food intake is generally reported. However, data interpretation often is circumvented by the difficulty to separate MP from bulk samples. Visual examination often is used as one or the only step to sort these particles. However, color, size, and shape are insufficient and often unreliable criteria. We present an extraction method based on hypochlorite digestion and isolation of MP from the membrane by sonication. The protocol is especially well adapted to a subsequent analysis by Raman spectroscopy. The method avoids fluorescence problems, allowing better identification of anthropogenic particles (AP) from stomach contents of fish by Raman spectroscopy. It was developed with commercial samples of microplastics and cotton along with stomach contents from three different Clupeiformes fishes: Clupea harengus , Sardina pilchardus , and Engraulis encrasicolus . The optimized digestion and isolation protocol showed no visible impact on microplastics and cotton particles while the Raman spectroscopic spectrum allowed the precise identification of microplastics and textile fibers. Thirty-five particles were isolated from nine fish stomach contents. Raman analysis has confirmed 11 microplastics and 13 fibers mainly made of cellulose or lignin. Some particles were not completely identified but contained artificial dyes. The novel approach developed in this manuscript should help to assess the presence, quantity, and composition of AP in planktivorous fish stomachs.
Is Zooplankton Body Size an Indicator of Water Quality in (Sub)tropical Reservoirs in China?
Large zooplankton can efficiently graze on algae and thereby improve water quality. However, zooplankton body size is considered to decrease with decreasing latitude because of the high fish predation and warm temperatures at lower latitudes. To explore how fish stocking has destabilized the trophic cascade and influenced water quality along a latitudinal gradient of reservoirs, we compared zooplankton body size and trophic cascades to water quality indicators in the subtropical Lake Qiandaohu and in tropical Guangdong reservoirs. The results showed that the body length and total biomass of the dominant zooplankton in Lake Qiandaohu were much larger than those of zooplankton in the Guangdong reservoirs. Moreover, fish predation was the key factor influencing the changes in zooplankton body size and total biomass in Lake Qiandaohu. In the Guangdong reservoirs, water temperature and total phosphorus were the pivotal drivers of zooplankton body size and biomass, respectively. In addition, structural equation models showed that the decreasing zooplankton body size and biomass under fish pressure weakened the grazing pressure on phytoplankton and indirectly contributed to the low water clarity in Lake Qiandaohu. However, fish had little influence on the inefficient algal grazing of zooplankton in the Guangdong reservoirs. Overall, zooplankton can function as an indicator of water quality in fish-controlled subtropical reservoirs but not in nutrient-controlled tropical reservoirs.
Occurrence of microplastics in gastrointestinal tracts of planktivorous fish from the Thoothukudi region
Planktivorous fish are easily susceptible to passive microplastic ingestion during their feeding behaviour and may be transferred along with the marine food web. Hence, the present study was conducted to assess the microplastics prevalence in the planktivorous fish (677 individuals) collected from 2 landing centres in the Thoothukudi, Gulf of Mannar region, South Tamil Nadu, India. The prevalence of microplastics was detected in 118 out of 677 individuals, with a mean abundance and percent occurrence of 1.22 ± 0.47 items/individual and 17%, respectively. The ingestion of microplastics in planktivorous fish was primarily due to their feeding habitat, in which they were prone to the accidental or passive intake of microplastics regardless of the fish’s length and body weight. The microplastics abundance was significantly higher in Sardinella gibbosa ( 1.34 ± 0.56 items/individual), which might be due to their pelagic and planktivorous feeding habitat, highest filtration capacity, presence of closed gill rakers, and also due to the passive ingestion of microplastics as food items. Fibres, blue, and 1 to 2mmsized microplastics were predominant in the guts of Sardinella gibbosa , accounting for 95.74, 47.87, and 46.80%, respectively, whereas in Leiognathus lineolatus , fragments, black, and 1 to 2mmsized microplastics were highly prevalent with 62.96, 72.22, and 79.62%, respectively. The predominance of various shapes (fragments, fibres), sizes (1–2 mm), and colours (blue and black) of microplastics in the guts of fish was influenced by their passive ingestion, ingestion of contaminated planktonic prey, lack of selectivity of prey particles and their resemblance to plankton species. Polypropylene polymers predominated (96.77% and 95.23%) in both fish, followed by polystyrene (3.22% and 4.76%). Furthermore, this study provides baseline data and insists that there is a need for continuous monitoring of the distribution of microplastics.
The role of temporal reproductive isolation, trophic polymorphism and growth rate fluctuations in the diversification of Arctic charr Salvelinus alpinus (L.) in Lake Kalarskii Davatchan, Transbaikalia, Russia
Trophic polymorphism and temporal reproductive isolation are the drivers of sympatric differentiation in many fish taxa. We present a new case of ecologically based diversification of Arctic charr in a Transbaikalian mountain lake inhabited by reproductively isolated dwarf and normal forms. These forms differ in size, diets and morphology and breed, respectively, in April–May and in September–October representing a rare example of sympatric spring- and autumn-spawning charr pair. Microsatellite analysis reveals clear-cut genetic differences and low-level hybridization between them. Dwarf form charr are planktivorous and manifest uniform slow growth. Normal form charr, though genetically homogeneous, are highly heterogeneous in size-at-age. They are subdivided into omnivorous small-size and piscivorous large-size groups, which can be considered as incipient forms at an early divergence stage. As evidenced by back-calculated growth data, their size-at-age heterogeneity results from highly variable individual growth patterns, which include different combinations of slow and fast growth periods presumably associated with spawning and non-spawning years. Growth acceleration in late ontogeny may result in the transformation of some normal charr from the smaller into the larger group during their lifetime.
Grazing impacts on phytoplankton in South American water ecosystems: a synthesis
The role of grazing as a controlling factor of phytoplankton has an extensive debate in the literature. In this article, five mechanisms that have been explored as potential controlling factors of grazing influence on phytoplankton in South America are discussed and compared with other latitudinal works. The temperature impact on zooplankton is not conclusive, with planktivorous fish appearing as the main controlling factor of zooplankton size ranges. Fish grazing effects on phytoplankton look despicable, but the impact of exotic filter-feeding fish remains controversial. Microphagous rotifers and Copepoda nauplii affect phytoplankton by selective size grazing, while large Cladocera and Copepoda adults can control phytoplankton when they reach high densities in the absence of fish. Both groups mainly feed on small sizes, with microzooplankton having a higher impact on very small phytoplankton. Some contradictory evidence arises for large colonial and filamentous algae. Exotic invasive filter-feeding bivalves are selective grazers in experimental approximations. Corbicula fluminea feeds on smaller particles, does not have taxonomic preferences, and has lower densities in nature than Limnoperna fortunei. Their effect on nature is not fully documented. In sum, several aspects still need deep scrutiny to fully understand the role of grazing on phytoplankton in South America.
Lake restoration: successes, failures and long-term effects
1. Eutrophication constitutes a serious threat to many European lakes and many approaches have been used during the past 20-30 years to improve lake water quality. Results from the various lake restoration initiatives are diverse and the long-term effects are not well described. 2. In this study we evaluated data from more than 70 restoration projects conducted mainly in shallow, eutrophic lakes in Denmark and the Netherlands. Special focus was given to the removal of zooplanktivorous and benthivorous fish, by far the most common internal lake measure. 3. In more than half of the biomanipulation projects, Secchi depth increased and chlorophyll a decreased to less than 50% within the first few years. In some of the shallow lakes, total phosphorus and total nitrogen levels decreased considerably, indicating an increased retention or loss by denitrification. The strongest effects seemed to be obtained 4-6 years after the start of fish removal. 4. The long-term effect of restoration initiatives can only be described for a few lakes, but data from biomanipulated lakes indicate a return to a turbid state within 10 years or less in most cases. One of reasons for the lack of long-term effects may be internal phosphorus loading from a mobile pool accumulated in the sediment. 5. Synthesis and applications. Lake restoration, and in particular fish removal in shallow eutrophic lakes, has been widely used in Denmark and the Netherlands, where it has had marked effects on lake water quality in many lakes. Long-term effects (> 8-10 years) are less obvious and a return to turbid conditions is often seen unless fish removal is repeated. Insufficient external loading reduction, internal phosphorus loading and absence of stable submerged macrophyte communities to stabilize the clear-water state are the most probable causes for this relapse to earlier conditions.
Drivers assessment of zooplankton grazing on phytoplankton under different scenarios of fish predation and turbidity in an in situ mesocosm experiment
Zooplankton play a key role in energy transfer within lake food webs, but we have a poor knowledge concerning their role as phytoplankton grazers in shallow subtropical lakes. In this study, we aimed to determine how zooplankton grazing upon phytoplankton is altered in different scenarios of fish predation and turbidity, and we explored the relevance of grazing compared to other environmental variables, to explain phytoplankton biomass changes. A mesocosm experiment was conducted by including the following treatments: fish, turbidity, fish + turbidity, and a control (without fish or varying turbidity). The experiment lasted 21 days, and samples were taken four times. Zooplankton grazing was only effective for the microphagous group upon Cryptophyceae, while large Chlorophyceae and small pennate Bacillariophyceae biomass were benefited in the presence of copepods and cladocerans, being negatively affected by depletions in nitrogen availability. In the turbidity treatment, a reduction in phytoplankton biomass was obtained, artificially increasing zooplankton grazing on phytoplankton, while fish presence inhibited grazing of adult copepods and cladocerans. The other groups of phytoplankton were only influenced by the environment. This experiment suggests that phytoplankton biomass variations would be more affected by the environment than by zooplankton grazing in shallow lakes from the Paraná River.
A new species of the enigmatic shark genus Nanocetorhinus (Chondrichthyes) from the Oligocene of Austria with palaeoceanographic implications
Deep-neritic sediments of the Eferding Formation (Egerian, Upper Oligocene) of Upper Austria from the Kamig kaolinite quarry revealed minute teeth of the putatively planktivorous shark genus . This is the oldest unambiguous record of this rarely documented genus, which was known so far only from Miocene deposits of Europe, North America and Japan. Based on previous studies, which showed a positive correlation between sediments of nutrient rich waters and plankton blooms with a majority of ichthyoliths of and , we argue for a filter-feeding and migratory lifestyle of the latter. Thus, it is supposed that migrated seasonally for foraging, in a similar way to the extant basking shark . This mode of life and the wide paleogeographic distribution of the open marine genus requires a deep and fully marine connection between the Paratethys and the Proto-Mediterranean Sea during late Oligocene times, which might have been established via the Slovenian Corridor.