Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
41,928 result(s) for "plant density"
Sort by:
Historical Trends in Sweet Corn Plant Density Tolerance Using Era Hybrids (1930–2010s)
Over the last six decades, steady improvement in plant density tolerance (PDT) has been one of the largest contributors to genetic yield gain in field corn. While recent research indicates that PDT in modern sweet corn hybrids could be exploited to improve yield, historical changes in PDT in sweet corn are unknown. The objectives of this study were to: (a) quantify the extent to which PDT has changed since introduction of hybrid sweet corn and (b) determine the extent to which changes over time in PDT are associated with plant morpho-physiological and ear traits. An era panel was assembled by recreating 15 sugary1 sweet corn hybrids that were widely used at one time in the United States, representing hybrids since the 1930s. Era hybrids were evaluated in field experiments in a randomized complete block design with a split-plot arrangement of treatments, including hybrid as the main factor and density as the split-plot factor. Plant density treatments included “Low” plant density (9,900 plants/ha) free of crowding stress or “High” plant density (79,000 plants/ha) with crowding stress. On average, per-area marketable ear mass (Mt/ha) increased at a rate of 0.8 Mt/ha/decade at High densities, whereas per-plant yield (i.e., kg/plant) remained unchanged over time regardless of the density level. Crate yield, a fresh market metric, improved for modern hybrids. However, processing sweet corn yield metrics like fresh kernel mass and recovery (amount of kernel mass contributing to the fresh ear mass) showed modest or no improvement over time, respectively. Modern sweet corn hybrids tend to have fewer tillers and lower fresh shoot biomass, potentially allowing the use of higher plant density; however, plant architecture alone does not accurately predict PDT of individual hybrids.
The effect of wheat seedling density on photosynthesis may be associated with the phyllosphere microorganisms
Wheat seedlings are significantly impacted by the presence of bacteria. However, bacteria are unavoidably growing together with wheat. The study aimed to reveal wheat photosynthesis, phyllosphere bacterial community composition, and a shift in the bacterial community following different density treatments in a closed artificial ecosystem. Here, we report the relationship between photosynthesis and bacterial community in wheat seedlings for different planting densities. In this closed artificial ecosystem, a total of 30 phyla were detected, with 17 of them were simultaneously present in four treatments, under high light intensity and carbon dioxide growth environment. The key phyla detected include Firmicutes, Proteobacteria, and Bacteroidetes. We found that planting densities significantly impacted the photosynthetic characteristics of wheat and bacterial genetic biodiversity, but not on species composition of the bacterial community. Network analysis shows that the phyllosphere bacteria network structures were characterized by the clustering coefficient and modularity. Network for the 1000 plants/m2 treatment group exhibits the highest levels of average clustering coefficient but lowest modularity and number of modules, among all plant densities tested. In addition, the network for the 1200 plants/m2 treatment group exhibits the best characteristics in terms of net photosynthesis rate and intrinsic water use efficiency, higher complex phyllosphere community network structures, higher abundance of Corynebacterium, and more function of “Amino acid metabolism”, which encourages the plants to grow better. The findings presented in this work elucidated the role of plant density in the growth of phyllosphere bacteria during wheat seedlings and provided theoretical support for reasonable wheat density cultivation in closed artificial ecosystems and wheat field production.
Yield and growth characteristics of erect panicle type rice (Oryza sativa L.) cultivar, Shennong265 under various crop management practices in Western Japan
Erect panicle rice cultivars utilize solar energy effectively and have improved ecological growing conditions. Among such cultivars, Shennong265 has been grown successfully throughout Northern China. Nevertheless, no studies have yet examined the relationships between crop dry matter productivity, weather conditions, and nitrogen uptake of the erect panicle type rice cultivar in Japan. The objective of our study was to evaluate the productivity of erect panicle rice Shennong265 in Western Japan under varied conditions. Three rice cultivars, Shennong265, Nipponbare, and Takanari were grown in the field under different fertilizer and plant density conditions in Western Japan; using this information, we compared yield and growth characteristics of Shennong265 with those of Nipponbare and Takanari. Although Shennong265 had radiation use efficiency similar to that of the high yielding cultivar (Takanari) and much higher leaf nitrogen content than Takanari and Nipponbare, the average grain yield of Shennong265 grown under normal fertilizer and plant density conditions was approximately 6.9 t ha −1 as against 6.2 t ha −1 for Nipponbare and 9.6 t ha −1 for Takanari. These results suggest that, while Shennong265 has a high yield potential, the environmental conditions including climate, fertilizer, and planting period provided in this study were not suitable for achieving its maximum yield. The reduced performance of Shennong265 may be caused by insufficient fertilizer after heading and by shorter growth periods, as well as by the climate of Western Japan. Additional fertilizer application during the heading stage and earlier transplanting may be needed to obtain higher Shennong265 yields in Western Japan.
Identifying key factors affecting coffee leaf rust incidence in agroforestry plantations in Peru
Coffee leaf rust (CLR), caused by Hemileia vastarix, is one of the most serious diseases of coffee plantations and cause great losses in coffee production. We aimed to examine coffee varieties, shade, age of coffee plants, coffee plant density and soil properties in relation to CLR infection. To do this, we established a total of 75 plots in three agroforestry coffee plantations in the central Peruvian Amazon. We gathered data there in 2011 (dry season) on the presence/absence of CLR; coffee variety; age and density of coffee plants, and also took hemispherical photographs to determine canopy openness. In 2014 (wet season), we again gathered data on the same variables. In 2012, we collected soil samples from a subset of the plots. At all plantations, coffee variety had a significant effect on CLR incidence, with the Catimor variety infected less frequently than Caturra. Coffee plant age had a significant positive effect on CLR incidence. Increasing coffee density also increased CLR incidence for some of the studied plantations/seasons. Comparing those plots from which data were collected in the dry and wet seasons, we found that CLR presence was significantly higher in the wet season. The effect of shade on CLR incidence was not clear. Catimor and Caturra varieties showed opposite trends of CLR incidence in response to shade quantity in most cases (Caturra variety CLR incidence was decreasing with shading increase and Catimor CLR incidence decreasing with decreasing shading). Finally, the soil properties did not affect CLR incidence.
Methodology of Analyzing Maize Density Loss in Smallholder’s Fields and Potential Optimize Approach
Increasing plant density is a key measure to close the maize (Zea mays L.) yield gap and ensure food security. However, there is a large plant density difference in the fields sown by agronomists and smallholders. The primary cause of this phenomenon is the lack of an effective methodology to systematically analyze the density loss. To identify the plant density loss processes from experimental plots to smallholder fields, a research methodology was developed in this study involving a farmer survey and measurements in a smallholder field. The results showed that the sowing density difference caused by farmer decision-making and plant density losses caused by mechanical and agronomic factors explained 15.5%, 5.5% and 6.8% of the plant density difference, respectively. Changing smallholder attitudes toward the value of increasing the plant density could help reduce this density loss and increase farm yields by 12.3%. Therefore, this methodology was effective for analyzing the plant density loss, and to clarify the primary causes of sowing density differences and plant density loss. Additionally, it was beneficial to identify the priorities and stakeholders who share responsibility for reducing the density loss. The methodology has wide applicability to address the sowing density differences and plant density loss in other areas to narrow crop yield gaps and ensure food security.
Retrieval of Fractional Vegetation Cover from Remote Sensing Image of Unmanned Aerial Vehicle Based on Mixed Pixel Decomposition Method
FVC (fractional vegetation cover) is highly correlated with wheat plant density in the reviving period, which is an important indicator for conducting variable-rate nitrogenous topdressing. In this study, with the objective of improving inversion accuracy of wheat plant density, an innovative approach of retrieval of FVC values from remote sensing images of a UAV (unmanned aerial vehicle) was proposed based on the mixed pixel decomposition method. Firstly, remote sensing images of an experimental wheat field were acquired by using a DJI Mini UAV and endmembers in the image were identified. Subsequently, a linear unmixing model was used to subdivide mixed pixels into components of vegetation and soil, and an abundance map of vegetation was acquired. Based on the abundance map of vegetation, FVC was calculated. Consequently, a linear regression model between the ground truth data of wheat plant density and FVC was established. The coefficient of determination (R2), RMSE (root mean square error), and RRMSE (Relative-RMSE) of the inversion model were calculated as 0.97, 1.86 plants/m2, and 0.677%, which indicates strong correlation between the FVC of mixed pixel decomposition method and wheat plant density. Therefore, we can conclude that the mixed pixel decomposition model of the remote sensing image of a UAV significantly improved the inversion accuracy of wheat plant density from FVC values, which provides method support and basic data for variable-rate nitrogenous fertilization in the wheat reviving period in the manner of precision agriculture.
Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.)
Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm²) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.
Effects of Floral Display Size and Plant Density on Pollinator Visitation Rate in a Natural Population of Digitalis purpurea
1. Pollinator visitation patterns in relation to variation in floral display size may be modified both quantitatively and qualitatively by local plant density. In this study four measures of pollinator response by Bombus spp. (plant visitation rate, bout length, proportion of flowers visited, flower visitation rate) were investigated under two or three different plant densities in two consecutive years in a natural population of Digitalis purpurea L. 2. Plant visitation rate increased with floral display size in both years, and was higher in dense patches compared with sparse ones in 1999. Bout lengths increased with display size in 1999, and bouts were longer in sparse patches. However, the actual rate of increase with display size was independent of plant density for both response measures. 3. The proportion of flowers visited decreased with floral display size in both years, and in 1999 the decline was faster in high-density patches. As a result, the proportion visited was higher in dense patches for the smallest display sizes, and higher in sparse patches for larger display sizes. 4. Flower visitation rate decreased with floral display size in both years. This is inconsistent with the idea that bees achieve an ideal free distribution across flowers. There was no significant effect of plant density. 5. These results demonstrate that local plant density variation may modify the functional relationship between floral display size and pollinator visitation rate, and potentially influence plant mating patterns.
Depth and Sowing Rate as Factors Affecting the Development, Plant Density, Height and Yielding for Two Faba Bean (Vicia faba L. Var. Minor) Cultivars
Sowing depth and density are factors which affect development and yielding due to their influence on plants’ competition for water, light and nutrients. The aim of the present research was to evaluate the effect of sowing depth (5 and 8 cm) and density (45, 60, 75 seeds m2) on the development and yield of two morphotypes of faba bean. Higher plants were found at 8 cm sowing depth in 2011 and 2013, in turn, plant density before harvest, at 5 cm in 2011 and 8 cm in 2013. The greatest seed yield was observed while sowing shallower in 2011 (4.50 t ha−1) and 2012 (6.62 t ha−1), and deeper in 2013 (3.53 t ha−1). Cultivar played in important role in shaping plant height and seed yield in all years of the experiment, as well as in straw yield in 2012. Bobas characterized by the greatest seed productivity in all years of experiment compared to Granit, as well as quantity of straw yield in 2011 and 2012 (3.51 and 4.88 t ha−1, respectively) and therefore can be recommended for cultivation. Taking into account plant density before harvest in 2011–2013 as well as straw yield in 2011 and 2013, the most favorable sowing density is 75 seeds per m2.
INTERACTION EFFECT OF CHEMICAL AND ORGANIC FERTILIZERS ON THE YIELD AND YIELD COMPONENTS OF Gundelia rosea AT DIFFERENT PLANT DENSITIES IN THE FIELD
Field experiments were conducted at two locations, Grdarasha Research Field Station, College of Agricultural Engineering Sciences, Salahaddin University – Erbil and Aquban special farm using randomized complete block design (RCBD) during two seasons 2019-2020 and 2020-2021 to study the effect of different plant densities and compost fertilizer of solid waste management and sorting of Akre district-Duhok province and NPK  (20:20:20) fertilizer on growth and edible portion characteristics of Gundelia rosea. The results indicated that the plants of the two years age in the both locations produce the highest value of length, dimeter, fresh and dry weight of edible portion with space increasing between plants and rows. While, total fresh and dry weight increased with decreasing the distance between plants and rows. Compost and compost + NPK fertilizer significantly increasing all edible portion parameters in both locations. The interaction between density and fertilizer resulted that D5 and compost and compost +NPK treatment produce the maximum rate of length, dimeter, fresh and dry weight of edible portion, while D1 and compost and compost + NPK record the highest total fresh and dry weight production.