Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
155,509 result(s) for "plant quality"
Sort by:
The distribution of herbivores between leaves matches their performance only in the absence of competitors
Few studies have tested how plant quality and the presence of competitors interact in determining how herbivores choose between different leaves within a plant. We investigated this in two herbivorous spider mites sharing tomato plants: Tetranychus urticae, which generally induces plant defenses, and Tetranychus evansi, which suppresses them, creating asymmetrical effects on coinfesting competitors. On uninfested plants, both herbivore species preferred young leaves, coinciding with increased mite performance. On plants with heterospecifics, the mites did not prefer leaves on which they had a better performance. In particular, T. urticae avoided leaves infested with T. evansi, which is in agreement with T. urticae being outcompeted by T. evansi. In contrast, T. evansi did not avoid leaves with the other species, but distributed itself evenly over plants infested with heterospecifics. We hypothesize that this behavior of T. evansi may prevent further spread of T. urticae over the shared plant. Our results indicate that leaf age determines within‐plant distribution of herbivores only in absence of competitors. Moreover, they show that this distribution depends on the order of arrival of competitors and on their effects on each other, with herbivores showing differences in behavior within the plant as a possible response to the outcome of those interactions. Within‐plant herbivore distribution is likely to affect species interactions. Here, we show that, in absence of competitors, herbivorous spider mites settle on tomato leaves that maximize their oviposition. However, in presence of another species, they choose plant strata that minimize competition.
Association between Unhealthful Plant-Based Diets and Possible Risk of Dyslipidemia
The relationship between the various types of diets derived from plants and vulnerability of dyslipidemia has rarely been investigated, and limited data exist in Asians whose dietary pattern is fairly different from that of the Western population. We aim to analyze the relationship between three plant-based diet indices (PDI) and the risk of dyslipidemia. Participants included 173,209 Korean adults who were aged ≥40 years from the Korean Genome and Epidemiology Study_Health Examination (2004–2013). A food frequency questionnaire (FFQ) was used to assess dietary intake. Three PDI were quantified for the study: overall PDI, healthful PDI (hPDI), and unhealthful PDI (uPDI). Among the 147,945 included, 48,166 (32.6%) of participants had dyslipidemia. Great adherence to uPDI was related with 15% greater odds of having dyslipidemia (OR: 1.15; 95% CI: 1.11–1.20, p-trend < 0.0001). No significant association was observed between PDI, hPDI, and dyslipidemia. The association between uPDI and dyslipidemia was significantly stronger among participants aged ≥55 years when compared to participants aged <55 years (p-value for interaction = 0.001). The quality of plant foods is vital in preventing dyslipidemia among people consuming high plant-based food diets.
Nuclear Auditing Handbook
Initially developed as a tool for training lead auditors of nuclear quality systems, the Nuclear Auditing Handbook has also been used as a reference by quality managers who plan quality system audits. It provides detailed material in such aspects as the development, administration, planning, preparation, performance, and reporting of quality system audits in energy-related fields. ASQ's Nuclear Committee of the Energy and Environment Division gathered a team of highly seasoned experts in the nuclear auditing field to expand this new edition's content and bring it current to modern-day best practices and standards. This book introduces updated information about requirements and standards, including the 2019 editions of the American Society of Mechanical Engineers (ASME) NQA-1 Quality Assurance Program Requirements for Nuclear Facility Applications and ASME BPVC Sections I; IV; and VIII, Divisions 1 and 2. The authors and editors have also added helpful tools to aid nuclear auditors, including case studies suitable for training auditors, blank forms for convenient use, and samples of completed forms.
Vermicompost as soil supplement to enhance growth, yield and quality of Triticum aestivum L.: a field study
Background: Vermicompost (VC) made from cattle dung as raw material was used as soil supplement in the plots of size 4.5 x 4.5 m. Five treatments were given viz. Soil (control), VC@5 t/ha, VC@10 t/ha, VC@20 t/ha and NPK (recommended by PAU, Ludhiana) in triplicates in a Randomized Block Design (RBD). A total of 50 plants were selected randomly for the assessment of growth and yield of wheat Triticum aestivum L.. Results: Most of the growth, yield and quality parameters were found to be maximum in NPK treatment. All the growth, yield and quality parameters in vermicompost treatments varied significantly from control though differences within various vermicompost treatments were not found to be significant. Conclusion: It has been observed that there is no significant difference on applying higher doses of vermicompost and lowest dose (5 t/ha) is as effective as higher doses. So, vermicompost application is cost effective.
Resource Selection by Female Moths in a Heterogeneous Environment: What Is a Poor Girl to Do?
1. According to the preference-performance hypothesis, female insects select resources that maximize offspring performance. To achieve high fitness, leaf miner females should then adjust their oviposition behaviour in response to leaf attributes signalling high host quality. 2. Here we investigate resource selection in Tischeria ekebladella, a leaf-mining moth of the pedunculate oak (Quercus robur), in relation to two alternative hypotheses: (1) females select their resources with respect to their future quality for developing larvae; or (2) temporal changes in resource quality prevent females from selecting the best larval resources. 3. Specifically, we test whether females show the strongest selection at the levels at which quality varies the most (shoots and leaves); whether they respond to specific leaf attributes (leaf size, phenolic content and conspecific eggs); and whether female preference is reflected in offspring performance. 4. Female choice of leaves was found to be non-random. Within trees, the females preferred certain shoots, but when the shoots were on different trees the degree of discrimination was about four times larger than when they were on the same trees. 5. While females typically lay more eggs on large leaves, this is not a result of active selection of large leaves, but rather a result of females moving at random and ovipositing at regular intervals. 6. The females in our study did not adjust their oviposition behaviour in response to leaf phenolic contents (as measured by the time of larval feeding). Neither did they avoid leaves with conspecific eggs. 7. Female choice of oviposition sites did not match patterns of offspring performance: there was no positive association between offspring survival and counts of eggs. 8. We propose that temporal variation in resource quality may prevent female moths from evaluating resource quality reliably. To compensate for this, females may adopt a risk-spreading strategy when selecting their resources.
Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts
Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality--aphids performed poorly on infected plants and rapidly emigrated from them--but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.
Sequence of arrival determines plant‐mediated interactions between herbivores
1. Induced changes in plant quality can mediate indirect interactions between herbivores. Although the sequence of attack by different herbivores has been shown to influence plant responses, little is known about how this affects the herbivores themselves. 2. We therefore investigated how induction by the leaf herbivore Spodoptera frugiperda influences resistance of teosinte (Zea mays mexicana) and cultivated maize (Zea mays mays) against root‐feeding larvae of Diabrotica virgifera virgifera. The importance of the sequence of arrival was tested in the field and laboratory. 3. Spodoptera frugiperda infestation had a significant negative effect on colonization by D. virgifera larvae in the field and weight gain in the laboratory, but only when S. frugiperda arrived on the plant before the root herbivore. When S. frugiperda arrived after the root herbivore had established, no negative effects on larval performance were detected. Yet, adult emergence of D. virgifera was reduced even when the root feeder had established first, indicating that the negative effects were not entirely absent in this treatment. 4. The defoliation of the plants was not a decisive factor for the negative effects on root herbivore development, as both minor and major leaf damage resulted in an increase in root resistance and the extent of biomass removal was not correlated with root‐herbivore growth. We propose that leaf‐herbivore‐induced increases in feeding‐deterrent and/or toxic secondary metabolites may account for the sequence‐specific reduction in root‐herbivore performance. 5. Synthesis. Our results demonstrate that the sequence of arrival can be an important determinant of plant‐mediated interactions between insect herbivores in both wild and cultivated plants. Arriving early on a plant may be an important strategy of insects to avoid competition with other herbivores. To fully understand plant‐mediated interactions between insect herbivores, the sequence of arrival should be taken into account.
The impact of mineral nutrients in food crops on global human health
Nutrient sufficiency is the basis of good health, productive lives and longevity for everyone. Nutrient availability to people is primarily determined by the output of foods produced from agricultural systems. If agricultural systems fail to provide enough food diversity and quantity to satisfy all the nutrients essential to human life, people will suffer, societies will deteriorate and national development efforts will stagnate. Importantly, plant foods provide most of the nutrients that feed the developing world. Unfortunately, as a result of population pressures, many global food systems are not currently providing enough micronutrients to assure adequate micronutrient intakes for all people. This has resulted in an increasing prevalence of micronutrient deficiencies (e.g., iron deficiency, vitamin A deficiency, and iodine deficiency disorders) that now afflicts over three billion people globally mostly among resource-poor women, infants and children in developing countries. The consequences of micronutrient malnutrition are profound and alarming for human existence. Agricultural approaches to finding sustainable solutions to this problem are urgently needed. This review presents some ways in which plant nutritionists can contribute to preventing micronutrient malnutrition in sustainable ways.
Interactive Effects of Rising Temperature and Nutrient Enrichment on Aquatic Plant Growth, Stoichiometry, and Palatability
The abundance and stoichiometry of aquatic plants are crucial for nutrient cycling and energy transfer in aquatic ecosystems. However, the interactive effects of multiple global environmental changes, including temperature rise and eutrophication, on aquatic plant stoichiometry and palatability remain largely unknown. Here, we hypothesized that (1) plant growth rates increase faster with rising temperature in nutrient-rich than nutrient-poor sediments; (2) plant carbon (C): nutrient ratios [nitrogen (N) and phosphorus (P)] respond differently to rising temperatures at contrasting nutrient conditions of the sediment; (3) external nutrient loading to the water column limits the growth of plants and decreases plant C:nutrient ratios; and that (4) changes in plant stoichiometry affect plant palatability. We used the common rooted submerged plant as a model species to test the effects of temperature and nutrient availability in both the sediment and the water column on plant growth and stoichiometry in a full-factorial experiment. The results confirmed that plants grew faster in nutrient-rich than nutrient-poor sediments with rising temperature, whereas external nutrient loading decreased the growth of plants due to competition by algae. The plant C: N and C: P ratios responded differently at different nutrient conditions to rising temperature. Rising temperature increased the metabolic rates of organisms, increased the nutrient availability in the sediment and enhanced plant growth. Plant growth was limited by a shortage of N in the nutrient-poor sediment and in the treatment with external nutrient loading to the water column, as a consequence, the limited plant growth caused an accumulation of P in the plants. Therefore, the effects of temperature on aquatic plant C:nutrient ratios did not only depend on the availability of the specific nutrients in the environment, but also on plant growth, which could result in either increased, unaltered or decreased plant C:nutrient ratios in response to temperature rise. Plant feeding trial assays with the generalist consumer (Gastropoda) did not show effects of temperature or nutrient treatments on plant consumption rates. Overall, our results implicate that warming and eutrophication might interactively affect plant abundance and plant stoichiometry, and therefore influence nutrient cycling in aquatic ecosystems.
Negative effects of vertebrate on invertebrate herbivores mediated by enhanced plant nitrogen content
1. Classic theory holds that the main interaction within the herbivore guild is competition, based on research focused on co-occurring, similarly sized species that reduce the quantity of shared plant resources. However, plant quality may also be crucial in mediating herbivore interspecific interactions. This is especially true when competition occurs between distantly related herbivore species, given that small terrestrial herbivores (e.g., insect herbivores) appear to be more sensitive to alterations of plant quality than plant quantity. 2. In this study, we first tested in the field whether large vertebrate herbivores (cattle Bos taurus) exerted a negative effect on smaller insect herbivores (grasshopper Euchorthippus unicolor) through their overlapping foraging preferences for a dominant grass Leymus chinensis. We measured changes in grass quantity, grass quality, and microclimatic conditions in response to vertebrate grazing and conducted additional manipulative studies in the field and the laboratory to identify potential mechanisms underlying the interaction. 3. Our results showed that grazing by large herbivores caused a significant decline in grasshopper population density and individual performance (survival, size, and weight of both female and male E. unicolor), despite a 38% increase in grass nitrogen (N) content in grazed plots. Experiments manipulating N levels of L. chinensis in the field and the laboratory confirmed that enriching plant N had a negative effect on grasshopper individual performance and population size. Therefore, enhanced quality (N content) of plant resources appears to be an important driver in mediating the negative effect of vertebrate grazing on grasshoppers.a 4. Synthesis. We document that phylogenetic relatedness and trait similarity can be poor predictors of interaction strength in some cases, since distantly related herbivores of disparate size can interact indirectly via changes in plant quality. Counter-intuitively, the observed negative effect of cattle on grasshoppers was mediated, at least in part, by an increase in plant quality in cattle grazed areas. The implication is that light to moderate grazing, a common management strategy, may contribute to suppression of grasshoppers in the Eurasian steppe grassland system by altering plant nutrient supplies.