Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,780
result(s) for
"plasma modelling"
Sort by:
Negative ion source development for a photoneutralization based neutral beam system for future fusion reactors
2016
In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency ( ∼ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D− beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.
Journal Article
UK APAP R-Matrix Electron-Impact Excitation Cross-Sections for Modelling Laboratory and Astrophysical Plasma
2025
Systematic R-matrix calculations of electron-impact excitation for ions of astrophysical interest have been performed since 2007 for many iso-electronic sequences as part of the UK Atomic Process for Astrophysical Plasma (APAP) network. Rate coefficients for Maxwellian electron distributions have been provided and used extensively in the literature and many databases for astrophysics. Here, we provide averaged collision strengths to be used to model plasma where electrons are non-Maxwellian, which often occurs in laboratory and astrophysical plasma. We also provide many new Maxwellian-averaged collision strengths, which include important corrections to the published values. Recently, we made available the H- and He-like collision strengths. Here, we provide data for ions of the Li-, Be-, B-, C-, N-, O-, Ne-, Na-, and Mg-like sequences.
Journal Article
Simulating Plasma Formation in Pores under Short Electric Pulses for Plasma Pulse Geo Drilling (PPGD)
by
Ezzat, Mohamed
,
Saar, Martin O.
,
Adams, Benjamin M.
in
Costs
,
Electric currents
,
Electric fields
2021
Plasma Pulse Geo Drilling (PPGD) is a contact-less drilling technique, where an electric discharge across a rock sample causes the rock to fracture. Experimental results have shown PPGD drilling operations are successful if certain electrode spacings, pulse voltages, and pulse rise times are given. However, the underlying physics of the electric breakdown within the rock, which cause damage in the process, are still poorly understood. This study presents a novel methodology to numerically study plasma generation for electric pulses between 200 and 500 kV in rock pores with a width between 10 and 100 μm. We further investigate whether the pressure increase, induced by the plasma generation, is sufficient to cause rock fracturing, which is indicative of the onset of drilling success. We find that rock fracturing occurs in simulations with a 100 μm pore size and an imposed pulse voltage of approximately 400 kV. Furthermore, pulses with voltages lower than 400 kV induce damage near the electrodes, which expands from pulse to pulse, and eventually, rock fracturing occurs. Additionally, we find that the likelihood for fracturing increases with increasing pore voltage drop, which increases with pore size, electric pulse voltage, and rock effective relative permittivity while being inversely proportional to the rock porosity and pulse rise time.
Journal Article
Numerical Modeling of the Effects of Pore Characteristics on the Electric Breakdown of Rock for Plasma Pulse Geo Drilling
2022
Drilling costs can be 80% of geothermal project investment, so decreasing these deep drilling costs substantially reduces overall project costs, contributing to less expensive geothermal electricity or heat generation. Plasma Pulse Geo Drilling (PPGD) is a contactless drilling technique that uses high-voltage pulses to fracture the rock without mechanical abrasion, which may reduce drilling costs by up to 90% of conventional mechanical rotary drilling costs. However, further development of PPGD requires a better understanding of the underlying fundamental physics, specifically the dielectric breakdown of rocks with pore fluids subjected to high-voltage pulses. This paper presents a numerical model to investigate the effects of the pore characteristics (i.e., pore fluid, shape, size, and pressure) on the occurrence of the local electric breakdown (i.e., plasma formation in the pore fluid) inside the granite pores and thus on PPGD efficiency. Investigated are: (i) two pore fluids, consisting of air (gas) or liquid water; (ii) three pore shapes, i.e., ellipses, circles, and squares; (iii) pore sizes ranging from 10 to 150 μm; (iv) pore pressures ranging from 0.1 to 2.5 MPa. The study shows how the investigated pore characteristics affect the local electric breakdown and, consequently, the PPGD process.
Journal Article
Modeling of Electrohydrodynamic (EHD) Plasma Thrusters: Optimization of Physical and Geometrical Parameters
by
Pinheiro, Mario J.
,
Sá, Paulo A.
,
Calvo, Eduardo M.
in
Aeronautics
,
Atmospheric pressure
,
Electric fields
2022
This work aims to optimize a previous self-consistent model of a single stage electrohydrodynamic (EHD) thruster for space applications. The investigated parameters were the thruster performance (propulsion force T, the thrust to power ratio T/P, the electric potential distribution, the spatial distribution for the electrons and ions, and the laminar flow velocity) under several conditions, such as the design features related to the cathode’s cylindrical geometry (height and radius) and some electric parameters such as the ballast resistor, and the applied potential voltage. In addition, we examined the influence of the secondary electron emission coefficient on the plasma propellant parameters. The anode to cathode potential voltage ranges between 0.9 and 40 kV, and the ballast resistance varies between 500 and 2500 M. Argon and xenon are the working gases. We assumed the gas temperature and pressure constant, 300 K and 1.3 kPa (10 Torr), respectively. The optimal matching for Xe brings off a thrust of 3.80 μN and an efficiency T/P = 434 mN/kW, while for Ar, T = 2.75 μN, and thruster to the power of 295 mN/kW. To our knowledge, the missing data in technical literature does not allow the verification and validation (V&V) of our numerical model.
Journal Article
Microwave Discharges in Liquid Hydrocarbons: Physical and Chemical Characterization
2021
Microwave discharges in dielectric liquids are a relatively new area of plasma physics and plasma application. This review cumulates results on microwave discharges in wide classes of liquid hydrocarbons (alkanes, cyclic and aromatic hydrocarbons). Methods of microwave plasma generation, composition of gas products and characteristics of solid carbonaceous products are described. Physical and chemical characteristics of discharge are analyzed on the basis of plasma diagnostics and 0D, 1D and 2D simulation.
Journal Article
State-of-the-Art and Advancement Paths for Inductive Pulsed Plasma Thrusters
2020
An inductive pulsed plasma thruster (IPPT) operates by pulsing high current through an inductor, typically a coil of some type, producing an electromagnetic field that drives current in a plasma, accelerating it to high speed. The IPPT is electrodeless, with no direct electrical connection between the externally applied pulsed high-current circuit and the current conducted in the plasma. Several different configurations were proposed and tested, including those that produce a plasma consisting of an accelerating current sheet and those that use closed magnetic flux lines to help confine the plasma during acceleration. Specific impulses up to 7000 s and thrust efficiencies over 50% have been measured. The present state-of-the-art for IPPTs is reviewed, focusing on the operation, modeling techniques, and major subsystems found in various configurations. Following that review is documentation of IPPT technology advancement paths that were proposed or considered.
Journal Article
General parametric dependence of atmospheric pressure argon plasmas
2023
Using a global model for atmospheric pressure plasma, we investigated general dependence of plasma properties on power density and plasma size. We built a global simulation for a pure argon cylindrical plasma and observed changes in plasma properties with the power density and plasma size. The study of the power dependence shows that the density of excited species is in general proportional to the power when the power density is low, whereas the density becomes saturated when the power density becomes high enough. These trends are explained by a generalized form of particle balance equation, implying that the same trends for reactive species density would emerge in various plasma conditions. For the plasma size dependence, the electron density increases and the electron temperature decreases for increasing plasma size. Both become saturated when the plasma size becomes large enough. These trends of electron density and temperature are explained by the relative change of the diffusive loss. Our simulation results give a useful insight into the tendency of plasma properties over a wide range of plasma parameters.
Journal Article
Tokamak Edge Plasma Turbulence Interaction with Magnetic X-Point in 3D Global Simulations
2019
Turbulence in the edge plasma of a tokamak is a key actor in the determination of the confinement properties. The divertor configuration seems to be beneficial for confinement, suggesting an effect on turbulence of the particular magnetic geometry introduced by the X-point. Simulations with the 3D fluid turbulence code TOKAM3X are performed here to evaluate the impact of a diverted configuration on turbulence in the edge plasma, in an isothermal framework. The presence of the X-point is found, locally, to affect both the shape of turbulent structures and the amplitude of fluctuations, in qualitative agreement with recent experimental observations. In particular, a quiescent region is found in the divertor scrape-off layer (SOL), close to the separatrix. Globally, a mild transport barrier spontaneously forms in the closed flux surfaces region near the separatrix, differently from simulations in limiter configuration. The effect of turbulence-driven Reynolds stress on the formation of the barrier is found to be weak by dedicated simulations, while turbulence damping around the X-point seems to globally reduce turbulent transport on the whole flux surface. The magnetic shear is thus pointed out as a possible element that contributes to the formation of edge transport barriers.
Journal Article
Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma‐Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction
by
Qu, Zhongping
,
Huang, Jingwen
,
Zhu, Mengying
in
Agricultural production
,
Agriculture
,
Ammonia
2025
Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NH4NO3) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air‐to‐NOx‐to‐NH4NO3 pathway for synthesizing liquid nitrogen fertilizer. The process employs an underwater multi‐bubble plasma reactor powered by nanosecond pulse to generate aqueous NOx, which is then partially reduced to NH4NO3 through electrocatalysis. Results show that the highest NOx production rate, 786.5 mol h−1, is achieved when the N2/O2 ratio closely resemble that of air, and short pulse rise/fall times significantly increase NOx yield. Further plasma diagnostic and global plasma chemistry modeling indicate that short rise/fall times facilitate simultaneous dielectric barrier discharge and spark discharge, synergistically enhancing nitrogen fixation efficiency. The partially electro‐reduced liquid NH4NO3 fertilizer significantly improves plant growth, with stem length and leaf length increasing by 91.26% and 54.72%, respectively. Cost estimation reveals that 44.22% of the production cost is attributed to electricity consumption, underscoring the potential for optimization with renewable energy integration. Overall, the study provides new insight for the sustainable production and in‐place utilization of liquid nitrogen fertilizers which may advance sustainable agriculture. This study introduces a method for sustainable synthesis of liquid ammonium nitrate fertilizer using plasma‐electrocatalysis technology, with air and water as the only raw materials. Additionally, it provides an in‐depth exploration of the reaction mechanisms in pulsed discharge plasma, delivering critical scientific insights necessary for optimizing plasma‐electrocatalysis nitrogen fixation and facilitating its practical application.
Journal Article