Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,264 result(s) for "plasmonic"
Sort by:
Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits
The properties of propagating surface plasmon polaritons (SPPs) along one-dimensional metal structures have been investigated for more than 10 years and are now well understood. Because of the high confinement of electromagnetic energy, propagating SPPs have been considered to represent one of the best potential ways to construct next-generation circuits that use light to overcome the speed limit of electronics. Many basic plasmonic components have already been developed. In this review, researches on plasmonic waveguides are reviewed from the perspective of plasmonic circuits. Several circuit components are constructed to demonstrate the basic function of an optical digital circuit. In the end of this review, a prototype for an SPP-based nanochip is proposed, and the problems associated with building such plasmonic circuits are discussed. A plasmonic chip that can be practically applied is expected to become available in the near future. Plasmonics: nanophotonic circuitry The prospects for creating sophisticated nanophotonic circuits by harnessing the opportunities provided by plasmonics are exciting. Yurui Fang and Mengtao Sun from the Beijing National Laboratory for Condensed Matter Physics review recent progress in the development of various components and devices for generating, manipulating and detecting surface plasmon polaritons — tightly confined waves that can be excited by light at the interface between a metal and a dielectric. Their small size offers opportunities for constructing photonic devices that are smaller than the wavelength of light, a major barrier to the miniaturization of optical integrated circuits. Fang and Sun describe how nanoscale waveguides, multiplexers, lasers, high-speed modulators, logic gates and detectors for surface plasmon polaritons are all coming to fruition. They also consider the future prospects of this technology.
Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.
Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach
We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore–MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex. The magnitude of this induced current is related to the spectral properties of the film, the overlap between these film properties and those of the fluorophore, the spacing between the nanoparticles in the film, the excitation wavelength, and the polarization of the excitation source. Recent literature has shown that the FIPC system is ideal for aqueous ion sensing using turn-on fluorescent probes, and in this paper, we subsequently examine if it is possible to detect aqueous DNA also via a turn-on fluorescent probe, as well as other commercially available DNA detection strategies. We report the effects of DNA concentration, probe concentration, and probe characteristics on the development of an FIPC assay for the detection of non-specific DNA in aqueous solutions.
Plasmonic metal‐organic frameworks
Plasmonic metal‐organic frameworks are composite nanoparticles comprising plasmonic metal nanoparticles (NPs) embedded within a metal‐organic framework (MOF) matrix. As a result, not only the functionalities of the individual components are retained, but synergistic effects additionally provide improved chemical and physical properties. Recent progress in plasmonic MOFs has demonstrated the potential for nanofabrication and various nanotechnology applications. Synthetic challenges toward plasmonic MOFs have been recently addressed, resulting in new opportunities toward practical applications, such as surface‐enhanced Raman scattering, therapy, and catalysis. The impact of key parameters (thermodynamic vs. kinetic) on the synthetic pathways of plasmonic MOFs is reviewed, while providing insight into related progress toward structure‐derived applications. Plasmonic metal‐organic frameworks hybrid nanocomposites feature improved chemical and physical properties, as compared with their individual components, due to synergistic performance. These materials show excellent opportunities toward practical applications, such as surface‐enhanced Raman scattering, therapy, and catalysis.
Recent Progress of Plasmonic Perovskite Photodetectors
Perovskite materials have emerged as promising candidates for next-generation photodetectors (PDs) owing to their superior optoelectronic properties and compatibility with low-cost, low-temperature fabrication processes. Broad applicability of PDs spans diverse fields, including X-ray detection, wearable electronics, autonomous vehicles, artificial intelligence, imaging, optical communication, and biomedical sensing, offering advantages over conventional semiconductor PDs based on Si, Ge, InGaAs, and GaN. The integration of plasmonic nanostructures into perovskite-based devices has recently emerged as an effective strategy to enhance performance by amplifying light absorption near the perovskite layer. This review summarizes recent advances and design strategies for plasmonic-integrated perovskite photodetectors (Pe-PDs), with a particular emphasis on plasmonic nanopatterns and nanoparticles as viable approaches for solution-processable Pe-PDs.
Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures
The extension of plasmonics to materials beyond the conventional noble metals opens up a novel and exciting regime after the inspiring discovery of characteristic localized surface plasmon resonances (LSPRs) in doped semiconductor nanocrystals originating from the collective oscillations of free holes in the valence band. We herein prepare colloidal monodisperse eccentric dual plasmonic noble metal-nonstoichiometric copper chalcogenide (Au@Cu 2− x Se) hybrid hetero-nanostructures with precisely controlled semiconductor shell size and two tunable LSPRs in both visible (VIS) and near-infrared (NIR) regions associated with Au and Cu 2− x Se, respectively. Through systematic evaluations of the photocatalytic performance of Au@Cu 2− x Se upon sole NIR and dual VIS + NIR simultaneous excitations, we are capable of unambiguously elucidating the role of plasmonic coupling between two dissimilar building blocks on the accelerated photocatalytic reactions with greater rate constants from both experimental and computational perspectives. The significantly enhanced strength of the electromagnetic field arising from efficient plasmonic coupling under the excitation of two LSPRs results in the superior activities of dual plasmonic Au@Cu 2− x Se in photocatalysis. The new physical and chemical insights gained from this work provide the keystone for the rational design and construction of high-quality dual- or even multi-plasmonic nano-systems with optimized properties for widespread applications ranging from photocatalysis to molecular spectroscopies.
Core–Shell‐Heterostructured Magnetic–Plasmonic Nanoassemblies with Highly Retained Magnetic–Plasmonic Activities for Ultrasensitive Bioanalysis in Complex Matrix
Herein, a facile self‐assembly strategy for coassembling oleic acid‐coated iron oxide nanoparticles (OC‐IONPs) with oleylamine‐coated gold nanoparticles (OA‐AuNPs) to form colloidal magnetic–plasmonic nanoassemblies (MPNAs) is reported. The resultant MPNAs exhibit a typical core–shell heterostructure comprising aggregated OA‐AuNPs as a plasmonic core surrounded by an assembled magnetic shell of OC‐IONPs. Owing to the high loading of OA‐AuNPs and reasonable spatial distribution of OC‐IONPs, the resultant MPNAs exhibit highly retained magnetic–plasmonic activities simultaneously. Using the intrinsic dual functionality of MPNAs as a magnetic separator and a plasmonic signal transducer, it is demonstrated that the assembled MPNAs can achieve the simultaneous magnetic manipulation and optical detection on the lateral flow immunoassay platform after surface functionalization with recognition molecules. In conclusion, the core–shell‐heterostructured MPNAs can serve as a nanoanalytical platform for the separation and concentration of target compounds from complex biological samples using magnetic properties and simultaneous optical sensing using plasmonic properties. Herein, the facile synthesis of magnetic–plasmonic nanoassemblies (MPNAs) is reported, which exhibit a typical core–shell structure, wherein oleylamine‐coated gold nanoparticles (OA‐AuNPs) preferentially aggregate and form a plasmonic core and oleic acid‐coated iron oxide nanoparticles (OC‐IONPs) assemble a magnetic shell. The resultant MPNAs hold the highly retained magnetic–plasmonic activities for the separation and simultaneous optical sensing of target compounds in complex biological samples.
Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination
Plasmonic effect using a cross-hair can convey strongly localized surface plasmon modes among the separated composite nanostructures. Compared to its counterpart without the cross-hair, this characteristic has the remarkable merit of enhancing absorptance at resonance and can make the structure carry out a dual-band plasmonic perfect absorber (PPA). In this paper, we propose and design a novel dual-band PPA with a gathering of four metal-shell nanorods using a cross-hair operating at visible and near-infrared regions. Two absorptance peaks at 1050 nm and 750 nm with maximal absorptance of 99.59% and 99.89% for modes 1 and 2, respectively, are detected. High sensitivity of 1200 nm refractive unit (1/RIU), figure of merit of 26.67 and Q factor of 23.33 are acquired, which are very remarkable compared with the other PPAs. In addition, the absorptance in mode 1 is about nine times compared to its counterpart without the cross-hair. The proposed structure gives a novel inspiration for the design of a tunable dual-band PPA, which can be exploited for plasmonic sensor and other nanophotonic devices.
Gold Nanoparticles in Photonic Crystals Applications: A Review
This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.
SERS Hotspot Engineering by Aerosol Self‐Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance
Surface‐enhanced Raman scattering (SERS) is a powerful sensing technique. However, the employment of SERS sensors in practical applications is hindered by high fabrication costs from processes with limited scalability, poor batch‐to‐batch reproducibility, substrate stability, and uniformity. Here, highly scalable and reproducible flame aerosol technology is employed to rapidly self‐assemble uniform SERS sensing films. Plasmonic Ag nanoparticles are deposited on substrates as nanoaggregates with fine control of their interparticle distance. The interparticle distance is tuned by adding a dielectric spacer during nanoparticle synthesis that separates the individual Ag nanoparticles within each nanoaggregate. The dielectric spacer thickness dictates the plasmonic coupling extinction of the deposited nanoaggregates and finely tunes the Raman hotspots. By systematically studying the optical and morphological properties of the developed SERS surfaces, structure–performance relationships are established and the optimal hot‐spots occur for interparticle distance of 1 to 1.5 nm among the individual Ag nanoparticles, as also validated by computational modeling, are identified for the highest signal enhancement of a molecular Raman reporter. Finally, the superior stability and batch‐to‐batch reproducibility of the developed SERS sensors are demonstrated and their potential with a proof‐of‐concept practical application in food‐safety diagnostics for pesticide detection on fruit surfaces is explored. Robust surface‐enhanced Raman scattering (SERS) sensing surfaces are fabricated using one‐step flame nanoparticle deposition. The sensing surfaces exhibit superior stability and high batch‐to‐batch reproducibility, highlighting their potential in practical (bio)chemical sensing. The detection of pesticides on fruit surfaces demonstrates a proof‐of‐concept practical application in food safety diagnostics at the point of consumption.