Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "plastic re-distribution"
Sort by:
Re-Distribution of Welding Residual Stress in Fatigue Crack Propagation Considering Elastic–Plastic Behavior
The welding residual stress re-distribution behavior during fatigue crack propagation in butt-welded high-strength steel plates for ship construction is investigated based on experimental test results and numerical analyses. The specimens’ initial welding residual stresses are obtained from X-ray for middle tensile (MT) specimens cut from butt-welded high-strength steel plates. Then, fatigue crack propagation experiments on MT specimens are conducted, and a strain gauge is used to measure the residual stress re-distribution field around cracks. A practical fatigue crack propagation simulation procedure is developed with a dynamic update of in-situ welding residual stress, where the residual stress intensity factor Kres of the MT specimen is deduced. The stress ratio effect on Kres during fatigue crack propagation is analyzed and a good agreement between experimental and numerical results is achieved.
Deposition and Mobilization of Microplastics in a Low-Energy Fluvial Environment from a Geomorphological Perspective
Though microplastic (MP/MiP) pollution of the environment is a popular research topic, a relatively limited number of studies are investigating its geomorphological context. However, site-specific hydrological and morphological parameters fundamentally affect the MP transport, deposition and mobilization. Therefore, we aimed to evaluate the geomorphological influencing factors on MP deposition in the fluvial sediments of the Tisza River (Central Europe). Between the two surveys (in 2019 and 2020), small flood waves rearranged the MP pollution, as in the sediments of the Tisza it decreased by 30% and in the tributaries by 48%. The previously highly polluted upstream and downstream sections became moderately polluted, but the contamination increased in the Middle Tisza, and the hot-spots were rearranged. The increasing longitudinal trend in the MP content exists if the minimum values of the hydrologically uniform sections are considered. The tributaries are important MP sources, as 80% of them had a higher (by 20%) MP content in their sediments than the Tisza had near the confluence, and they increased the MP content of the Tisza by 52% on average. The point-bars were the most polluted in-channel forms, while the side-bars and sediment sheets had less MP content, by 18 and 23%, respectively. The spatial trend of the MP content of these forms was not the same. Therefore, during the planning of sampling campaigns, it is very important to consider the geomorphological setting of a sampling site: we suggest sampling side-bars. No clear connection between the particle size of the sediments and their MP content was found.