Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,721 result(s) for "pluripotency"
Sort by:
Derivation of trophoblast stem cells from naïve human pluripotent stem cells
Naïve human pluripotent stem cells (hPSCs) provide a unique experimental platform of cell fate decisions during pre-implantation development, but their lineage potential remains incompletely characterized. As naïve hPSCs share transcriptional and epigenomic signatures with trophoblast cells, it has been proposed that the naïve state may have enhanced predisposition for differentiation along this extraembryonic lineage. Here we examined the trophoblast potential of isogenic naïve and primed hPSCs. We found that naïve hPSCs can directly give rise to human trophoblast stem cells (hTSCs) and undergo further differentiation into both extravillous and syncytiotrophoblast. In contrast, primed hPSCs do not support hTSC derivation, but give rise to non-self-renewing cytotrophoblasts in response to BMP4. Global transcriptome and chromatin accessibility analyses indicate that hTSCs derived from naïve hPSCs are similar to blastocyst-derived hTSCs and acquire features of post-implantation trophectoderm. The derivation of hTSCs from naïve hPSCs will enable elucidation of early mechanisms that govern normal human trophoblast development and associated pathologies. The placenta is one of the most important human organs, but it is perhaps the least understood. The first decision the earliest human cells have to make, shortly after the egg is fertilized by a sperm, is whether to become part of the embryo or part of the placenta. This choice happens before a pregnancy even implants into the uterus. The cells that commit to becoming the embryo transform into ‘naïve pluripotent’ cells, capable of becoming any cell in the body. Those that commit to becoming the placenta transform into ‘trophectoderm’ cells, capable of becoming the two types of cell in the placenta. Placental cells either invade into the uterus to anchor the placenta or produce hormones to support the pregnancy. Once a pregnancy implants into the uterus, the naïve pluripotent cells in the embryo become ‘primed’. This prevents them from becoming cells of the placenta, and it poses a problem for placental research. In 2018, scientists in Japan reported conditions for growing trophectoderm cells in the laboratory, where they are known as “trophoblast stem cells”. These cells were capable of transforming into specialized placental cells, but needed first to be isolated from the human embryo or placenta itself. Dong et al. now show how to reprogram other pluripotent cells grown in the laboratory to produce trophoblast stem cells. The first step was to reset primed pluripotent cells to put them back into a naïve state. Then, Dong et al. exposed the cells to the same concoction of nutrients and chemicals used in the 2018 study. This fluid triggered a transformation in the naïve pluripotent cells; they started to look like trophoblast stem cells, and they switched on genes normally active in trophectoderm cells. To test whether these cells had the same properties as trophoblast stem cells, Dong et al. gave them chemical signals to see if they could mature into placental cells. The stem cells were able to transform into both types of placental cell, either invading through a three-dimensional gel that mimics the wall of the uterus or making pregnancy hormones. There is a real need for a renewable supply of placental cells in pregnancy research. Animal placentas are not the same as human ones, so it is not possible to learn everything about human pregnancy from animal models. A renewable supply of trophoblast stem cells could aid in studying how the placenta forms and why this process sometimes goes wrong. This could help researchers to better understand miscarriage, pre-eclampsia and other conditions that affect the growth of an unborn baby. In the future, it may even be possible to make custom trophoblast stem cells to study the specific fertility issues of an individual.
The role of BMP4 signaling in trophoblast emergence from pluripotency
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Induction of human trophoblast stem-like cells from primed pluripotent stem cells
The placenta is a transient but important multifunctional organ crucial for healthy pregnancy for both mother and fetus. Nevertheless, limited access to human placenta samples and the paucity of a proper in vitro model system have hampered our understanding of the mechanisms underlying early human placental development and placenta-associated pregnancy complications. To overcome these constraints, we established a simple procedure with a short-term treatment of bone morphogenetic protein 4 (BMP4) in trophoblast stem cell culture medium (TSCM) to convert human primed pluripotent stem cells (PSCs) to trophoblast stem-like cells (TSLCs). These TSLCs show not only morphology and global gene expression profiles comparable to bona fide human trophoblast stem cells (TSCs) but also long-term self-renewal capacity with bipotency that allows the cells to differentiate into functional extravillous trophoblasts (EVT) and syncytiotrophoblasts (ST). These indicate that TSLCs are equivalent to genuine human TSCs. Our data suggest a straightforward approach to make human TSCs directly from preexisting primed PSCs and provide a valuable opportunity to study human placenta development and pathology from patients with placenta-related diseases.
CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.Despite some success in patients with certain B cell malignancies and relapsed and/or refractory multiple myeloma, studies testing chimeric antigen receptor (CAR) T cells in patients with advanced-stage solid tumours have been largely unsuccessful, with a few notable exceptions. In this Perspective, the author provides some possible reasons for the failures of most CAR T cell-based approaches and suggests strategies that might address some of these challenges.
The Divergent Pluripotent States in Mouse and Human Cells
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
A nomenclature consensus for nervous system organoids and assembloids
Self-organizing three-dimensional cellular models derived from human pluripotent stem cells or primary tissue have great potential to provide insights into how the human nervous system develops, what makes it unique and how disorders of the nervous system arise, progress and could be treated. Here, to facilitate progress and improve communication with the scientific community and the public, we clarify and provide a basic framework for the nomenclature of human multicellular models of nervous system development and disease, including organoids, assembloids and transplants. The nomenclature for human multicellular models of nervous system development and disease, including organoids, assembloids and transplants, is discussed and a consensus framework is presented.