Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,638
result(s) for
"pneumococcal disease"
Sort by:
Increased Incidence of Invasive Pneumococcal Disease among Children after COVID-19 Pandemic, England
by
Amin-Chowdhury, Zahin
,
Zamarreño, Dania V.
,
Bertran, Marta
in
Age groups
,
bacteria
,
Cohort analysis
2022
During July–December 2021, after COVID-19 restrictions were removed in England, invasive pneumococcal disease incidence in children <15 years of age was higher (1.96/100,000 children) than during the same period in 2020 (0.7/100,000 children) and in prepandemic years 2017–2019 (1.43/100,000 children). Childhood vaccine coverage should be maintained to protect the population.
Journal Article
Twenty-Year Public Health Impact of 7- and 13-Valent Pneumococcal Conjugate Vaccines in US Children
2021
Pneumococcal conjugate vaccines (PCVs) have been used in the United States since 2000. To assess the cumulative 20-year effect of PCVs on invasive pneumococcal disease (IPD) incidence among children <5 years of age, we analyzed Active Bacterial Core Surveillance data, conducted a literature review, and modeled expected and observed disease. We found that PCVs have averted >282,000 cases of IPD, including ≈16,000 meningitis, ≈172,000 bacteremia, and ≈55,000 bacteremic pneumonia cases. In addition, vaccination has prevented 97 million healthcare visits for otitis media, 438,914-706,345 hospitalizations for pneumonia, and 2,780 total deaths. IPD cases declined 91%, from 15,707 in 1997 to 1,382 in 2019. Average annual visits for otitis media declined 41%, from 78 visits/100 children before PCV introduction to 46 visits/100 children after PCV13 introduction. Annual pneumonia hospitalizations declined 66%-79%, from 110,000-175,000 in 1997 to 37,000 in 2019. These findings confirm the substantial benefits of PCVs for preventing IPD in children.
Journal Article
Effect of COVID-19 Pandemic on Invasive Pneumococcal Disease in Children, Catalonia, Spain
by
Izquierdo, Conchita
,
Viñado, Belén
,
Díaz-Conradi, Alvaro
in
13-valent pneumococcal conjugate vaccine
,
Child
,
Communicable diseases in children
2022
We analyzed the effect of COVID-19 on healthcare demand and invasive pneumococcal disease in children in Catalonia, Spain. Compared with 2018-2019, we noted large reductions in healthcare activities and incidence of invasive pneumococcal disease in 2020. These changes likely resulted from nonpharmaceutical measures implemented during the COVID-19 pandemic.
Journal Article
Outbreak of Serotype 1 Invasive Pneumococcal Disease, Kibera Urban Informal Settlement, Nairobi, Kenya, 2023
2025
Use of 10-valent pneumococcal conjugate vaccine in Kenya has led to substantial reductions in vaccine-type pneumococcal carriage and invasive pneumococcal disease. However, analysis of recent surveillance data indicates an outbreak of vaccine-type serotype 1 in 2023 in Kibera, Kenya. Continued monitoring of invasive pneumococcal disease in Kenya is warranted.
Journal Article
Effectiveness of 23-Valent Pneumococcal Polysaccharide Vaccine against Invasive Pneumococcal Disease in Adults, Japan, 2013–2017
by
Oishi, Kazunori
,
Maruyama, Takaya
,
Kasahara, Kei
in
23-valent pneumococcal polysaccharide vaccine
,
Adults
,
Age groups
2020
The decline in the proportion of pneumococcal conjugate vaccine (PCV)-covered serotypes among adult invasive pneumococcal disease (IPD) patients might change the overall effectiveness of the 23-valent pneumococcal polysaccharide vaccine (PPSV23) because its effectiveness differs according to serotype. Using the indirect cohort method, we calculated the effectiveness of PPSV23 against IPD among adults in Japan to assess the impact of the national pediatric PCV program. Clinical and epidemiologic information and pneumococcal isolates were collected from IPD patients >20 years of age through enhanced IPD surveillance during April 2013-December 2017. Adjusted effectiveness against PPSV23-serotype IPD was 42.2%. Despite a substantial decline in the proportion of 13-valent PCV serotypes during the study period (45% to 31%), the change in effectiveness for PPSV23-serotype IPD was limited (47.1% to 39.3%) and only marginal in the elderly population (39.9% to 39.4%). The pediatric PCV program had limited impact on PPSV23 effectiveness against IPD in adults.
Journal Article
Cost-effectiveness of PCV20 to Prevent Pneumococcal Disease in the Pediatric Population: A German Societal Perspective Analysis
2024
IntroductionSince 2009, a pneumococcal conjugate vaccine (PCV) covering 13 serotypes (PCV13) has been included by Germany’s Standing Committee on Vaccinations for infants, resulting in major reductions in pneumococcal disease (PD). Higher-valent vaccines may further reduce PD burden. This cost-effectiveness analysis compared 20-valent PCV (PCV20) under a 3+1 schedule with 15-valent PCV (PCV15) and PCV13, both under 2+1 schedule, in Germany’s pediatric population.MethodsA Markov model with annual cycles over a 10-year time horizon was adapted to simulate the clinical and economic impact of pediatric vaccination with PCV20 versus lower-valent PCVs in Germany. The model used PCV13 clinical effectiveness and impact studies as well as PCV7 efficacy studies for vaccine direct and indirect effect estimates. Epidemiologic, utility, and medical cost inputs were obtained from published sources. Benefits and costs were discounted at 3% from a German societal perspective. Outcomes included PD cases, deaths, costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs).ResultsIn the base case, PCV20 provided greater health benefits than PCV13, averting more cases of invasive pneumococcal disease (IPD; 15,301), hospitalized and non-hospitalized pneumonia (460,197 and 472,365, respectively), otitis media (531,634), and 59,265 deaths over 10 years. This resulted in 904,854 additional QALYs and a total cost saving of €2,393,263,611, making PCV20 a dominant strategy compared with PCV13. Compared to PCV15, PCV20 was estimated to avert an additional 11,334 IPD, 704,948 pneumonia, and 441,643 otitis media cases, as well as 41,596 deaths. PCV20 was associated with a higher QALY gain and lower cost (i.e., dominance) compared with PCV15. The robustness of the results was confirmed through scenario analyses as well as deterministic and probabilistic sensitivity analyses.ConclusionPCV20 3+1 dominated both PCV13 2+1 and PCV15 2+1 over 10 years. Replacing lower-valent PCVs with PCV20 would result in greater clinical and economic benefits, given PCV20’s broader serotype coverage.Plain Language SummaryPneumococcal diseases (e.g., ear infections, pneumonia, bloodstream infections) are among the leading causes of illness and death in children worldwide. The pneumococcal conjugate vaccine protects against pneumococcal diseases and has significantly reduced the number of newly diagnosed cases. Higher-valent vaccines (which provide coverage for a greater number of disease-causing serotypes) have recently received European Commission approval for use in adults and children. This study examined costs and health benefits associated with the 20-valent pneumococcal conjugate vaccine (PCV20) under a 3+1 (i.e., three primary doses and one booster dose) schedule in Germany’s childhood vaccination program compared with 13-valent pneumococcal conjugate vaccine (PCV13) and the 15-valent pneumococcal conjugate vaccine (PCV15), both under a 2+1 (two primary doses, one booster) schedule. PCV20 was estimated to result in greater health benefits from avoiding more cases in pneumococcal diseases and lower costs compared with both PCV13 and PCV15. PCV20, therefore, is considered the best option among the three vaccines for children in Germany.
Journal Article
Invasive Pneumococcal Disease and Long-Term Mortality Rates in Adults, Alberta, Canada
by
Marrie, Thomas J.
,
Tyrrell, Gregory J.
,
Eurich, Dean T.
in
Ambulatory care
,
bacteria
,
Comorbidity
2022
The relationship between increased short-term mortality rates after invasive pneumococcal disease (IPD) has been frequently studied. However, the relationship between IPD and long-term mortality rates is unknown. IPD patients in Alberta, Canada, had clinical data collected that were linked to administrative databases. We used Cox proportional hazards modeling, and the primary outcome was time to all-cause deaths. First IPD events were identified in 4,522 patients, who had a median follow-up of 3.2 years (interquartile range 0.8‒9.1 years). Overall all-cause mortality rates were consistently higher among cases than controls at 30 days (adjusted hazard ratio [aHR] 3.75, 95% CI 3.29–4.28), 30‒90 days (aHR 1.56, 95% CI 1.27‒1.93), and >90 days (aHR 1.43, 95% CI 1.33–1.54). IPD increases risk for short, intermediate, and long-term mortality rates regardless of age, sex, or concurrent conditions. These findings can help clinicians focus on postdischarge patient plans to limit long-term effects after acute IPD infection.
Journal Article
Whole-Genome Analysis of Streptococcus pneumoniae Serotype 4 Causing Outbreak of Invasive Pneumococcal Disease, Alberta, Canada
by
Ricketson, Leah J.
,
Kellner, James D.
,
Tyrrell, Gregory J.
in
Adults
,
Antimicrobial agents
,
antimicrobial resistance
2021
After the introduction of pneumococcal conjugate vaccines for children, invasive pneumococcal disease caused by Streptococcus pneumoniae serotype 4 declined in all ages in Alberta, Canada, but it has reemerged and spread in adults in Calgary, primarily among persons who are experiencing homelessness or who use illicit drugs. We conducted clinical and molecular analyses to examine the cases and isolates. Whole-genome sequencing analysis indicated relatively high genetic variability of serotype 4 isolates. Phylogenetic analysis identified 1 emergent sequence type (ST) 244 lineage primarily associated within Alberta and nationally distributed clades ST205 and ST695. Isolates from 6 subclades of the ST244 lineage clustered regionally, temporally, and by homeless status. In multivariable logistic regression, factors associated with serotype 4 invasive pneumococcal disease were being male, being <65 years of age, experiencing homelessness, having a diagnosis of pneumonia or empyema, or using illicit drugs.
Journal Article
Hospitalization for Invasive Pneumococcal Diseases in Young Children before Use of 13-Valent Pneumococcal Conjugate Vaccine, Suzhou, China
by
Liu, Changpeng
,
Chen, Qinghui
,
Chen, Kaile
in
Age groups
,
At risk youth
,
Bacterial infections
2021
A 13-valent pneumococcal conjugate vaccine against invasive pneumococcal disease (IPD) was introduced in China in April 2017. We describe 105 children <5 years of age who were hospitalized for IPD at Soochow University Affiliated Children's Hospital in Suzhou, China, during January 2010-December 2017. We calculated the incidence of hospitalization for IPD as 14.55/100,000 children in Suzhou. We identified 8 different capsular serotypes: 6B (28.4% of cases), 14 (18.9% of cases), 19A (18.9% of cases), 19F (12.2% of cases), 23F (10.8% of cases), 20 (4.1% of cases), 9V (4.1% of cases), and 15B/C (2.7% of cases). These results provide baseline data of IPD before the introduction of this vaccine in China, enabling researchers to better understand its effects on IPD incidence.
Journal Article
Estimating the Clinical and Economic Impact of Switching from the 13-Valent Pneumococcal Conjugate Vaccine (PCV13) to Higher-Valent Options in Greek Infants
by
Warren, Sophie
,
Barmpouni, Myrto
,
Perdrizet, Johnna
in
Conjugate vaccines
,
Conjugates
,
Cost analysis
2023
In June 2010, Greece introduced the 13-valent pneumococcal conjugate vaccine (PCV13) for pediatric vaccination and has since observed a large decrease in pneumococcal disease caused by these vaccine serotypes, yet the disease prevalence of non-vaccine serotypes has increased. Two higher-valent conjugate vaccines, a 15-valent (PCV15) and a 20-valent (PCV20), were developed to improve serotype coverage and combat serotype replacement. A decision-analytic model was adapted to the Greek setting using historical pneumococcal disease trends from PCV13 to forecast future clinical and economic outcomes of higher-valent PCVs over a 10-year period (2023–2033). The model estimated outcomes related to invasive pneumococcal disease (IPD), hospitalized and non-hospitalized pneumonia, and otitis media (OM) resulting from a switch in vaccination programs to PCV15 in 2023 or switching to PCV20 in 2024. Cost-effectiveness was evaluated from the third-party payer’s perspective in the Greek healthcare system. Compared to implementing PCV15 one year earlier, switching from PCV13 to PCV20 in 2024 was estimated to be a cost-saving strategy by saving the Greek health system over EUR 50 million in direct medical costs and averting over 250 IPD cases, 54,800 OM cases, 8450 pneumonia cases, and 255 deaths across all ages over a 10-year period.
Journal Article