Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,957 result(s) for "point cloud data"
Sort by:
Classification of Point Cloud Data in Road Scenes Based on PointNet
Point cloud data, with its rich information and high-precision geometric details, holds significant value for urban road infrastructure surveying and management. To overcome the limitations of manual classification, this study employs deep learning techniques for automated point cloud feature extraction and classification, achieving high-precision object recognition in road scenes. By integrating the Princeton ModelNet40, ShapeNet, and Sydney Urban Objects datasets, we extracted 3D spatial coordinates from the Sydney Urban Objects Dataset and organized labeled point cloud files to build a comprehensive dataset reflecting real-world road scenarios. To address noise and occlusion-induced data gaps, three augmentation strategies were implemented: (1) Farthest Point Sampling (FPS): Preserves critical features while mitigating overfitting. (2) Random Z-axis rotation, translation, and scaling: Enhances model generalization. (3) Gaussian noise injection: Improves training sample realism. The PointNet++ framework was enhanced by integrating a point-filling method into the preprocessing module. Model training and prediction were conducted using its Multi-Scale Grouping (MSG) and Single-Scale Grouping (SSG) schemes. The model achieved an average training accuracy of 86.26% (peak single-instance accuracy: 98.54%; best category accuracy: 93.15%) and a test set accuracy of 97.41% (category accuracy: 84.50%). This study demonstrates successful road scene point cloud classification, providing valuable insights for point cloud data processing and related research.
Shell Model Reconstruction of Thin-Walled Structures from Point Clouds for Finite Element Modelling of Existing Steel Bridges
Digital twin models utilising point cloud data have received significant attention for efficient bridge maintenance and performance assessment. There are some studies that show finite element (FE) models from point cloud data. While most of those approaches focus on modelling by solid elements, modelling of some civil structures, such as bridges, requires various uses of beam and shell elements. This study proposes a systematic approach for constructing shell element FE models from point cloud data of thin-walled structural members. The proposed methodology involves k-means clustering for point cloud segmentation into individual plates, principal component analysis for neutral plane estimation, and edge detection based on normal vector variations for geometric structure determination. Validation experiments using point cloud data of a steel corner specimen revealed dimensional errors up to 5 mm and angular errors up to 6°, but static load analysis demonstrated good accuracy with maximum displacement errors within 3.8% and maximum stress errors within 7.7% compared to nominal models. Additionally, the influence of point cloud data quality on FE model geometry and analysis results was evaluated based on geometric accuracy and point cloud density metrics, revealing that significant variations in density within the same surface lead to reduced neutral plane estimation accuracy. Furthermore, toward practical application to actual bridge structures, on-site measurements and quality evaluation of point cloud data from a steel plate girder bridge were conducted. The results showed that thickness errors in the bridge data reached up to 2 mm, while surface deviation RMSE ranged from 3 to 5 mm. This research contributes to establishing practical FE modelling procedures from point cloud data and providing a model validation framework that ensures appropriate abstraction in structural analysis.
Scalability and Performance of LiDAR Point Cloud Data Management Systems: A State-of-the-Art Review
Current state-of-the-art point cloud data management (PCDM) systems rely on a variety of parallel architectures and diverse data models. The main objective of these implementations is achieving higher scalability without compromising performance. This paper reviews the scalability and performance of state-of-the-art PCDM systems with respect to both parallel architectures and data models. More specifically, in terms of parallel architectures, shared-memory architecture, shared-disk architecture, and shared-nothing architecture are considered. In terms of data models, relational models, and novel data models (such as wide-column models) are considered. New structured query language (NewSQL) models are considered. The impacts of parallel architectures and data models are discussed with respect to theoretical perspectives and in the context of existing PCDM implementations. Based on the review, a methodical approach for the selection of parallel architectures and data models for highly scalable and performance-efficient PCDM system development is proposed. Finally, notable research gaps in the PCDM literature are presented as possible directions for future research.
A roadmap for the computation of persistent homology
Persistent homology (PH) is a method used in topological data analysis (TDA) to study qualitative features of data that persist across multiple scales. It is robust to perturbations of input data, independent of dimensions and coordinates, and provides a compact representation of the qualitative features of the input. The computation of PH is an open area with numerous important and fascinating challenges. The field of PH computation is evolving rapidly, and new algorithms and software implementations are being updated and released at a rapid pace. The purposes of our article are to (1) introduce theory and computational methods for PH to a broad range of computational scientists and (2) provide benchmarks of state-of-the-art implementations for the computation of PH. We give a friendly introduction to PH, navigate the pipeline for the computation of PH with an eye towards applications, and use a range of synthetic and real-world data sets to evaluate currently available open-source implementations for the computation of PH. Based on our benchmarking, we indicate which algorithms and implementations are best suited to different types of data sets. In an accompanying tutorial, we provide guidelines for the computation of PH. We make publicly available all scripts that we wrote for the tutorial, and we make available the processed version of the data sets used in the benchmarking.
Feature Analysis of Scanning Point Cloud of Structure and Research on Hole Repair Technology Considering Space-Ground Multi-Source 3D Data Acquisition
As one of the best means of obtaining the geometry information of special shaped structures, point cloud data acquisition can be achieved by laser scanning or photogrammetry. However, there are some differences in the quantity, quality, and information type of point clouds obtained by different methods when collecting point clouds of the same structure, due to differences in sensor mechanisms and collection paths. Thus, this study aimed to combine the complementary advantages of multi-source point cloud data and provide the high-quality basic data required for structure measurement and modeling. Specifically, low-altitude photogrammetry technologies such as hand-held laser scanners (HLS), terrestrial laser scanners (TLS), and unmanned aerial systems (UAS) were adopted to collect point cloud data of the same special-shaped structure in different paths. The advantages and disadvantages of different point cloud acquisition methods of special-shaped structures were analyzed from the perspective of the point cloud acquisition mechanism of different sensors, point cloud data integrity, and single-point geometric characteristics of the point cloud. Additionally, a point cloud void repair technology based on the TLS point cloud was proposed according to the analysis results. Under the premise of unifying the spatial position relationship of the three point clouds, the M3C2 distance algorithm was performed to extract the point clouds with significant spatial position differences in the same area of the structure from the three point clouds. Meanwhile, the single-point geometric feature differences of the multi-source point cloud in the area with the same neighborhood radius was calculated. With the kernel density distribution of the feature difference, the feature points filtered from the HLS point cloud and the TLS point cloud were fused to enrich the number of feature points in the TLS point cloud. In addition, the TLS point cloud voids were located by raster projection, and the point clouds within the void range were extracted, or the closest points were retrieved from the other two heterologous point clouds, to repair the top surface and façade voids of the TLS point cloud. Finally, high-quality basic point cloud data of the special-shaped structure were generated.
Cross-Section Deformation Analysis and Visualization of Shield Tunnel Based on Mobile Tunnel Monitoring System
With the ongoing developments in laser scanning technology, applications for describing tunnel deformation using rich point cloud data have become a significant topic of investigation. This study describes the independently developed a mobile tunnel monitoring system called the second version of Tunnel Scan developed by Capital Normal University (CNU-TS-2) for data acquisition, which has an electric system to control its forward speed and is compatible with various laser scanners such as the Faro and Leica models. A comparison with corresponding data acquired by total station data demonstrates that the data collected by CNU-TS-2 is accurate. Following data acquisition, the overall and local deformation of the tunnel is determined by denoising and 360° deformation analysis of the point cloud data. To enhance the expression of the analysis results, this study proposes an expansion of the tunnel point cloud data into a two-dimensional image via cylindrical projection, followed by an expression of the tunnel deformation through color difference to visualize the deformation. Compared with the three-dimensional modeling method of visualization, this method is easier to implement and facilitates storage. In addition, it is conducive to the performance of comprehensive analysis of problems such as water leakage in the tunnel, thereby achieving the effect of multiple uses for a single image.
From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage
Building Information Modelling (BIM) is a globally adapted methodology by government organisations and builders who conceive the integration of the organisation, planning, development and the digital construction model into a single project. In the case of a heritage building, the Historic Building Information Modelling (HBIM) approach is able to cover the comprehensive restoration of the building. In contrast to BIM applied to new buildings, HBIM can address different models which represent either periods of historical interpretation, restoration phases or records of heritage assets over time. Great efforts are currently being made to automatically reconstitute the geometry of cultural heritage elements from data acquisition techniques such as Terrestrial Laser Scanning (TLS) or Structure From Motion (SfM) into BIM (Scan-to-BIM). Hence, this work advances on the parametric modelling from remote sensing point cloud data, which is carried out under the Rhino+Grasshopper-ArchiCAD combination. This workflow enables the automatic conversion of TLS and SFM point cloud data into textured 3D meshes and thus BIM objects to be included in the HBIM project. The accuracy assessment of this workflow yields a standard deviation value of 68.28 pixels, which is lower than other author’s precision but suffices for the automatic HBIM of the case study in this research.
Digital Inspection Technology for Sheet Metal Parts Using 3D Point Clouds
To solve the low efficiency of traditional sheet metal measurement, this paper proposes a digital inspection method for sheet metal parts based on 3D point clouds. The 3D point cloud data of sheet metal parts are collected using a 3D laser scanner, and the topological relationship is established by using a K-dimensional tree (KD tree). The pass-through filtering method is adopted to denoise the point cloud data. To preserve the fine features of the parts, an improved voxel grid method is proposed for the downsampling of the point cloud data. Feature points are extracted via the intrinsic shape signatures (ISS) algorithm and described using the fast point feature histograms (FPFH) algorithm. After rough registration with the sample consensus initial alignment (SAC-IA) algorithm, an initial position is provided for fine registration. The improved iterative closest point (ICP) algorithm, used for fine registration, can enhance the registration accuracy and efficiency. The greedy projection triangulation algorithm optimized by moving least squares (MLS) smoothing ensures surface smoothness and geometric accuracy. The reconstructed 3D model is projected onto a 2D plane, and the actual dimensions of the parts are calculated based on the pixel values of the sheet metal parts and the conversion scale. Experimental results show that the measurement error of this inspection system for three sheet metal workpieces ranges from 0.1416 mm to 0.2684 mm, meeting the accuracy requirement of ±0.3 mm. This method provides a reliable digital inspection solution for sheet metal parts.
Structured Point Cloud Data Analysis Via Regularized Tensor Regression for Process Modeling and Optimization
Advanced 3D metrology technologies such as coordinate measuring machine and laser 3D scanners have facilitated the collection of massive point cloud data, beneficial for process monitoring, control and optimization. However, due to their high dimensionality and structure complexity, modeling and analysis of point clouds are still a challenge. In this article, we use multilinear algebra techniques and propose a set of tensor regression approaches to model the variational patterns of point clouds and to link them to process variables. The performance of the proposed methods is evaluated through simulations and a real case study of turning process optimization.