Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
24,007 result(s) for "pollination"
Sort by:
Animal pollinators
Many plants depend on animals to help move pollen around, so that they can reproduce. Readers will see how hummingbirds, mice, bats, and other animals play a big role in pollination. Simple text and supportive photos and diagrams help readers understand key ideas and details about this important science concept.
Pollination and floral ecology
Pollination and Floral Ecology is the most comprehensive single-volume reference to all aspects of pollination biology--and the first fully up-to-date resource of its kind to appear in decades. This beautifully illustrated book describes how flowers use colors, shapes, and scents to advertise themselves; how they offer pollen and nectar as rewards; and how they share complex interactions with beetles, birds, bats, bees, and other creatures. The ecology of these interactions is covered in depth, including the timing and patterning of flowering, competition among flowering plants to attract certain visitors and deter others, and the many ways plants and animals can cheat each other.
Cross-pollination
Some plants need to have pollen spread from one plant to another flower in order to reproduce. Readers will learn the steps in the cross-pollination process in this book. Simple text and supportive photos and diagrams help readers grasp key ideas and details about this important science concept.
The Pollination and Fruit Quality of Two Kiwifruit Cultivars (Actinidia chinensis var. chinensis ‘AU Golden Sunshine’ and ‘AU Gulf Coast Gold') (Ericales: Actinidiaceae) Grown in the Southeastern United States
Kiwifruit is a new emerging crop for the southeastern United States that requires cross-pollination to set fruit. However, the pollination requirements for varieties grown in the southeastern United States are unknown. Through insect surveys and a bagging experiment, we assessed the pollination requirements of two female kiwifruit cultivars (Actinidia chinensis var. chinensis ‘AU Golden Sunshine’ and A. chinensis var. chinensis ‘AU Gulf Coast Gold'). For each, fruit quantity (fruit set) and fruit quality (weight, size, seed count, firmness, soluble solid content, and dry matter) were compared among three pollination treatments (wind, insect, and artificial pollination). Low abundances of insects were observed visiting female flowers of both kiwifruit cultivars, and therefore likely minimally influenced kiwifruit pollination. Artificial pollination resulted in the greatest percentages of fruit set and marketable fruits, followed by insect and wind pollination. Artificial pollination resulted in fruits that were greater in weight, size, and contained more seeds, than insect- and wind-pollinated fruits. Firmness and soluble solid content did not vary greatly between pollination treatments, yet were greater in ‘AU Golden Sunshine'. Dry matter content did not vary greatly between pollination treatments or between each cultivar. To maximize yields and optimize fruit quality, these results suggest that kiwifruit producers should place more effort into artificial pollination compared to wind and insect pollination. Future research should explore the use of managed bees (e.g., honey bees and bumble bees) within kiwifruit orchards to determine ways to utilize them as a secondary source for pollination needs.
The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study
Abstract Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades.
An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction
Key message This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content. Presently, only a limited number of genes have been implicated in the gametophytic SI. In this study, the CCHC-type z inc finger proteins ( ZFP ), PbrZFP719 , was found to be more highly expressed in pollen grains and pollen tubes than other ZFP s. Experimental over-expression of PbrZFP719 via pollen magnetofection and its knockdown using antisense oligonucleotides demonstrated that PbrZFP719 positively mediates pollen tube growth in pear. Further analyses revealed that variations in PbrZFP719 expression correlate with the changes in ROS levels and cellulose content at the tips of pollen tubes. Notably, PbrZFP719 expression was reduced in pollen tubes treated with self S-RNase. These results suggest that self S-RNase can inhibit pollen tube growth by decreasing ROS levels and cellulose content through the downregulation of PbrZFP719 expression. The information provide insights into a novel mechanism by which self S-RNase inhibits pollen tube growth during SI reaction and offers a refined approach for gene over-expression in pollen tube.
Experiment with pollination
\"Plants can form fruit and seeds when a plant is pollinated. Animals and wind help spread pollen from one plant to another. But do you know how insects pick up pollen from flowers? Or how each part of a flower helps pollination? Let's experiment to find out! Simple step-by-step instructions help readers explore science concepts and analyze information.\"--Provided by publisher.
Artificial Pollination Technologies: A Review
Pollination is critical for the production of many crops, and both insect- and wind-based pollination systems are increasingly disrupted by bloom asynchrony, weather events, and high demand for available insect pollinators. Artificial pollination systems can provide a security of yield even in poor pollination scenarios, and have been attracting increasing attention over the past decade. Here, we review pollen collection and pollen application technologies that have been employed to date. Major categories of mechanical pollination technology include: hand-pollination, handheld and backpack devices, vehicle-mounted devices, unmanned aerial vehicles (UAVs), and robotic and autonomous pollinators. The majority of the artificial pollination systems above are used to supplement natural pollination, but for some crops, these systems were found to perform adequately by themselves, including kiwifruit, olive, date palm, walnut, tomato, and hybrid maize seed. These systems often treat pollen as a system input, creating a chicken-and-egg problem in which the system is not economical without pollen and the pollen is not economical to collect without wide uptake of the system. To combat this, there has been success in developing mechanical harvesters for some crop plants (particularly almond and maize), but future work is needed for artificial pollination to be a commercial reality for the increasing number of cropping systems that are experiencing pollination deficits.