Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
886 result(s) for "poly(ethylene glycol)"
Sort by:
Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile
Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug's pharmacokinetics related to the conventional formulation. Poly(lactide- -glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United States Food and Drug Administration. PLGA gives polymeric nanoparticles with unique drug delivery characteristics. The application of PLGA nanoparticles (NPs) as intravenous (IV) sustained-release delivery vehicles for docetaxel can favorably modify pharmacokinetics, biofate, and pharmacotherapy of the drug in cancer patients. Surface modification of PLGA NPs with poly(ethylene glycol) (PEG) can further enhance NPs' long-circulating properties. Herein, an optimized fabrication approach has been used for the preparation of PLGA and PLGA-PEG NPs loaded with docetaxel for IV application. Both types of NP formulations demonstrated in vitro characteristics that were considered suitable for IV administration (with long-circulating sustained-release purposes). NP formulations were IV administered to an animal model, and docetaxel's pharmacokinetic and biodistribution profiles were determined and compared between study groups. PLGA and PEGylated PLGA NPs were able to modify the pharmacokinetics and biodistribution of docetaxel. Accordingly, the mode of changes made to pharmacokinetics and biodistribution of docetaxel is attributed to the size and surface properties of NPs. NPs contributed to increased blood residence time of docetaxel fulfilling their role as long-circulating sustained-release drug delivery systems. Surface modification of NPs contributed to more pronounced docetaxel blood concentration, which confirms the role of PEG in conferring long-circulation properties to NPs.
Poly(Ethylene Glycol) Functionalized Graphene Oxide in Tissue Engineering: A Review on Recent Advances
Owing to the unique physical, chemical, mechanical and electrical properties, graphene and its derivatives have been extensively researched for diverse biomedical applications including in tissue engineering since the past decade. Tunable chemical functionalities of graphene oxide (GO), a graphene derivative, allow easy surface functionalization. Functionalization of GO with poly(ethylene glycol) (PEG) (PEG-GO) has received significant attention as it offers superior solubility, stability, and biocompatibility. Besides being an attractive candidate for drug delivery, PEG-GO can aid in the attachment, proliferation, and differentiation of stem cells, thereby augmenting tissue engineering. PEG-GO has shown excellent antibacterial efficacy, which could be an added advantage to minimize implant-associated infections. This review describes the synthesis techniques, properties, and biological potential of PEG-GO towards mammalian and bacterial cells. Studies wherein these nanomaterials have been explored for engineering various tissues are reviewed along with future opportunities in this field.
Novel PLGA-based nanoparticles for the oral delivery of insulin
Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of D-α-tocopherol poly(ethylene glycol) 1000 succinate (TPGS)-emulsified poly(ethylene glycol) (PEG)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was investigated for sustained delivery of insulin (IS). To investigate the efficacy of TPGS-emulsified PEG-capped PLGA NPs (TPPLG NPs) as a potential drug carrier for the oral delivery of insulin. A series of biodegradable low-molecular-weight PLGA (80/20 [PLG4] and 70/30 [PLG6]) copolymers were synthesized by melt polycondensation. The commercial insulin-loaded TPGS-emulsified PEG-capped PLGA NPs (ISTPPLG NPs) were synthesized by water-oil-water emulsion solvent evaporation method. The physical and chemical properties of PLGA copolymers, particle size, zeta potential, and morphology of the NPs were examined. The in vivo studies of ISTPPLG NPs were carried out in diabetic rats by oral administration. The maximum encapsulation efficiency of ISTPPLG6 NPs was 78.6% ± 1.2%, and the mean diameter of the NPs was 180 ± 20 nm. The serum glucose level was significantly (twofold) decreased on treatment with ISTPPLG NPs, and there was a threefold decrease with insulin-loaded PLGA (70/30) NPs when compared to that of free insulin-treated diabetic rats. The results show that the oral administration of ISTPPLG6 NPs is an effective method of reducing serum glucose level for a period of 24 hours. Histopathological studies reveal that ISTPPLG NPs could restore the damage caused by streptozotocin in the liver, kidneys, and pancreas, indicating its biocompatibility and regenerative effects. ISTPPLG6 NPs can act as potential drug carriers for the oral delivery of insulin.
Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Ethylene glycol metabolism in the poly(ethylene terephthalate)-degrading bacterium Ideonella sakaiensis
Poly(ethylene terephthalate) (PET)-degrading bacterium Ideonella sakaiensis produces hydrolytic enzymes that convert PET, via mono(2-hydroxyethyl) terephthalate (MHET), into the monomeric compounds, terephthalic acid (TPA), and ethylene glycol (EG). Understanding PET metabolism is critical if this bacterium is to be engineered for bioremediation and biorecycling. TPA uptake and catabolism in I. sakaiensis have previously been studied, but EG metabolism remains largely unexplored despite its importance. First, we identified two alcohol dehydrogenases (IsPedE and IsPedH) and one aldehyde dehydrogenase (IsPedI) in I. sakaiensis as the homologs of EG metabolic enzymes in Pseudomonas putida KT2440. IsPedE and IsPedH exhibited EG dehydrogenase activities with Ca 2+ and a rare earth element (REE) Pr 3+ , respectively. We further found an upregulated dehydrogenase gene when the bacterium was grown on EG, whose gene product (IsXoxF) displays a minor EG dehydrogenase activity with Pr 3+ . IsPedE displayed a similar level of activity toward various alcohols. In contrast, IsPedH was more active toward small alcohols, whereas IsXoxF was the opposite. Structural analysis with homology models revealed that IsXoxF had a larger catalytic pocket than IsPedE and IsPedH, which could accommodate relatively bulkier substrates. Pr 3+ regulated the protein expression of IsPedE negatively; IsPedH and IsXoxF were positively regulated. Taken together, these results indicated that the combination of IsPedH and IsXoxF complements the function of IsPedE in the presence of REEs. IsPedI exhibited dehydrogenase activity toward various aldehydes with the highest activity toward glycolaldehyde. This study demonstrated a unique alcohol oxidation pathway of I. sakaiensis , which could be efficient in EG utilization. Key points • IsPedH and IsXoxF complement IsPedE function in the presence of REEs. • IsPedI displayed the highest dehydrogenase activity toward glycolaldehyde. • Unique alcohol oxidation pathway of I. sakaiensis identified for EG utilization.
One Pot Synthesis of PEGylated Bimetallic Gold–Silver Nanoparticles for Imaging and Radiosensitization of Oral Cancers
Radiotherapy is an important treatment modality for many types of head and neck squamous cell carcinomas. Nanomaterials comprised of high atomic number (Z) elements are novel radiosensitizers enhance radiation injury by production of free radicals and subsequent DNA damage. Gold nanoparticles are upcoming as promising radiosensitizers due to their high (Z) biocompatibility, and ease for surface engineering. Bimetallic nanoparticles have shown enhanced anticancer activity compared to monometallic nanoparticles. PEG-coated Au-Ag alloy nanoparticles (BNPs) were synthesized using facile one pot synthesis techniques. Size of ~50±5nm measured by dynamic light scattering. Morphology, structural composition and elemental mapping were analyzed by electron microscopy and SAXS (small-angle X-ray scattering). The radiosensitization effects on KB oral cancer cells were evaluated by irradiation with 6MV X-rays on linear accelerator. Nuclear damage was imaged using confocal microscopy staining cells with Hoechst stain. Computed tomography (CT) contrast enhancement of BNPs was compared to that of the clinically used agent, Omnipaque. BNPs were synthesized using PEG 600 as reducing and stabilizing agent. The surface charge of well dispersed colloidal BNPs solution was -5mV. Electron microscopy reveals spherical morphology. HAADF-STEM and elemental mapping studies showed that the constituent metals were Au and Ag intermixed nanoalloy. Hydrodynamic diameter was ~50±5nm due to PEG layer and water molecules absorption. SAXS measurement confirmed BNPs size around 35nm. Raman shift of around 20 cm was observed when BNPs were coated with PEG. H NMR showed extended involvement of OH in synthesis. BNPs efficiently enter cytoplasm of KB cells and demonstrated potent in vitro radiosensitization with enhancement ratio ~1.5-1.7. Imaging Hoechst-stained nuclei demonstrated apoptosis in a dose-dependent manner. BNPs exhibit better CT contrast enhancement ability compared to Omnipaque. This bimetallic intermix nanoparticles could serve a dual function as radiosensitizer and CT contrast agent against oral cancers, and by extension possibly other cancers as well.
Synthesis and Characterisation of Photocrosslinked poly(ethylene glycol) diacrylate Implants for Sustained Ocular Drug Delivery
PurposeTo investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents.MethodsTriamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin.ResultsRegardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period.ConclusionPhotocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.
A novel drug delivery system of mixed micelles based on poly(ethylene glycol)‐poly(lactide) and poly(ethylene glycol)‐poly(ɛ‐caprolactone) for gambogenic acid
In this study, a novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)‐poly(lactide) (mPEG‐PLA) and poly(ethylene glycol)‐poly(ɛ‐caprolactone) (mPEG‐PCL), used as a novel nanocarrier to encapsulate gambogenic acid (GNA). GNA‐loaded mixed polymeric micelles (GNA‐MMs) was prepared by cosolvent evaporation method. The mean average size of GNA‐MMs was (83.23 ± 1.06) nm (n = 3) and entrapment efficiency (EE%) of GNA‐MMs was (90.18 ± 2.59) % (n = 3) as well as (12.36 ± 0.64) % (n = 3) for drug loading (DL%). Transmission electron microscopy revealed that the GNA‐MMs were spherical with “core‐shell” structures. Compared with free GNA solution, in vitro release of GNA from GNA‐MMs showed a two‐phase sustained release profile: an initial relatively fast phase and followed by a slower release phase. Pharmacokinetic results also indicated that the GNA‐MMs have longer systemic circulation time and slower plasma elimination rate than free GNA solution. Moreover, the in vitro cytotoxicity assay showed that the IC50 values on HepG2 cells for GNA‐MMs and free GNA were (5.67 ± 0.02) μM and (9.02 ± 0.03) μM, respectively. In addition, GNA‐MMs significantly increased the HepG2 cellular apoptosis in a concentration‐dependent manner. In conclusion, the results showed that mPEG‐PLA/mPEG‐PCL mixed micelles may serve as an ideal drug delivery system for GNA to prolong drug circulation time in body, enhance bioavailability and retained its potent antitumor effect.
Poly(ethylene‐glycol)‐Dimethacrylate (PEGDMA) Composite for Stereolithographic Bioprinting
Recent progress in additive manufacturing has enabled the application of stereolithography (SLA) in bioprinting to produce 3D biomimetic structures. Bioinks for SLA often require synthetic polymers as supplements to ensure the structural integrity of the printed cell‐laden constructs. High molecular weight (MW) poly(ethylene‐glycol)‐diacrylate (PEGDA) (MW ≥ 3400 Da) is commonly used to enhance the mechanical property of crosslinked hydrogels. However, the production of bioink with high MW PEGDA requires in‐house polymer synthesis or the acquisition of costly reagents, which may not be readily available in all laboratory settings. As an alternative to high MW PEGDA, this research investigated the use of poly(ethylene‐glycol)‐dimethacrylate (PEGDMA) (MW = 1000 Da) as a supplement of a bioink to enhance the mechanical properties of the SLA‐printed constructs. The successful demonstration showcases 1) the fabrication of 3D constructs with overhang and complex architecture, and 2) the cytocompatibility, with high cell viability of 71–87% over 6 days of culture, of the GelMA‐PEGDMA bioink to enable cell‐laden bioprinting. This study suggests PEGDMA as a viable supplement in the formulation of SLA bioink. The accessibility to PEGDMA will facilitate the advance in 3D bioprinting to fabricate complex bioinspired structures and tissue surrogates for biomedical applications. This work explores the use of poly(ethylene‐glycol)‐dimethacrylate (PEGDMA) as a supplement in the formulation of bioink for 3D bioprinting using stereolithography. Fabrication of 3D biomimetic constructs using the PEGDMA composite bioink with tunable stiffness is demonstrated. Crucially, cytocompatibility of the PEGDMA is shown to highlight the potential of PEGDMA in cell‐laden bioprinting for tissue engineering applications.
Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed the gelatin–PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials.