Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,021 result(s) for "polynomial systems"
Sort by:
On Finite Exceptional Orthogonal Polynomial Sequences Composed of Rational Darboux Transforms of Romanovski-Jacobi Polynomials
The paper presents the united analysis of the finite exceptional orthogonal polynomial (EOP) sequences composed of rational Darboux transforms of Romanovski-Jacobi polynomials. It is shown that there are four distinguished exceptional differential polynomial systems (X-Jacobi DPSs) of series J1, J2, J3, and W. The first three X-DPSs formed by pseudo-Wronskians of two Jacobi polynomials contain both exceptional orthogonal polynomial systems (X-Jacobi OPSs) on the interval (−1, +1) and the finite EOP sequences on the positive interval (1, ∞). On the contrary, the X-DPS of series W formed by Wronskians of two Jacobi polynomials contains only (infinitely many) finite EOP sequences on the interval (1, ∞). In addition, the paper rigorously examines the three isospectral families of the associated Liouville potentials (rationally extended hyperbolic Pöschl-Teller potentials of types a, b, and a′) exactly quantized by the EOPs in question.
Exceptional Differential Polynomial Systems Formed by Simple Pseudo-Wronskians of Jacobi Polynomials and Their Infinite and Finite X-Orthogonal Reductions
The paper advances a new technique for constructing the exceptional differential polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians of Jacobi polynomials (JPWs) with a common pair of the indexes, we generate the Darboux–Crum nets of the rational canonical Sturm–Liouville equations (RCSLEs). It is shown that each RCSLE in question has four infinite sequences of quasi-rational solutions (q-RSs) such that their polynomial components from each sequence form a X-Jacobi DPS composed of simple pseudo-Wronskian polynomials (p-WPs). For each p-th order rational Darboux Crum transform of the Jacobi-reference (JRef) CSLE, used as the starting point, we formulate two rational Sturm–Liouville problems (RSLPs) by imposing the Dirichlet boundary conditions on the solutions of the so-called ‘prime’ SLE (p-SLE) at the ends of the intervals (−1, +1) or (+1, ∞). Finally, we demonstrate that the polynomial components of the q-RSs representing the eigenfunctions of these two problems have the form of simple p-WPs composed of p Romanovski–Jacobi (R-Jacobi) polynomials with the same pair of indexes and a single classical Jacobi polynomial, or, accordingly, p classical Jacobi polynomials with the same pair of positive indexes and a single R-Jacobi polynomial. The common, fundamentally important feature of all the simple p-WPs involved is that they do not vanish at the finite singular endpoints—the main reason why they were selected for the current analysis in the first place. The discussion is accompanied by a sketch of the one-dimensional quantum-mechanical problems exactly solvable by the aforementioned infinite and finite EOP sequences.
A symmetric homotopy and hybrid polynomial system solving method for mixed trigonometric polynomial systems
A mixed trigonometric polynomial system, which rather frequently occurs in applications, is a polynomial system where every monomial is a mixture of some variables and sine and cosine functions applied to the other variables. Polynomial systems transformed from the mixed trigonometric polynomial systems have a special structure. Based on this structure, a hybrid polynomial system solving method, which is more efficient than random product homotopy method and polyhedral homotopy method in solving this class of systems, has been presented. Furthermore, the transformed polynomial system has an inherent partially symmetric structure, which cannot be adequately exploited to reduce the computation by the existing methods for solving polynomial systems. In this paper, a symmetric homotopy is constructed and, combining homotopy methods, decomposition, and elimination techniques, an efficient symbolic-numerical method for solving this class of polynomial systems is presented. Preservation of the symmetric structure assures us that only part of the homotopy paths have to be traced, and more important, the computation work can be reduced due to the existence of the inconsistent subsystems, which need not to be solved at all. Exploiting the new hybrid method, some problems from the literature and a challenging practical problem, which cannot be solved by the existing methods, are resolved. Numerical results show that our method has an advantage over the polyhedral homotopy method, hybrid method and regeneration method, which are considered as the state-of-art numerical methods for solving highly deficient polynomial systems of high dimension.
Polynomial-Approximation-Based Control for Nonlinear Systems
This paper is concerned with the stabilization problem for nonlinear systems. A new polynomial-approximation-based approach for modeling nonlinear systems is first proposed. The nonlinearity is approximated by polynomials, and the approximation errors are treated as modeling uncertainties. The original nonlinear systems are converted into polynomial systems with modeling uncertainties. In order to highlight the approximation accuracy, the piecewise polynomial approximation functions are utilized. A novel polynomial state-feedback controller is designed to solve the stabilization problem. Furthermore, switched polynomial state-feedback controllers are designed to improve the performance. The stabilization conditions are presented in terms of sum of squares, which can be numerically solved via SOSTOOLS. Finally, simulation examples are provided to demonstrate the feasibility of the proposed method and show its advantage over the polynomial-fuzzy-model-based approach.
Solving Fuzzy Systems in Dual Form Using Wu’s Method
In this paper, fuzzy polynomial systems in dual form are considered and an algebraic approach for finding their solutions is presented. A dual fuzzy polynomial system in the form A X + B = C X + D , where A , B , C , and D are fuzzy matrices, is converted to a system with real coefficients and variables first. Then, Wu’s algorithm is used as a solution procedure for solving this system. This algorithm leads to solving characteristic sets that are amenable to easy solution. Finally, the accuracy of the presented algorithm is shown via some examples.
Special Values of the Hypergeometric Series
In this paper, we present a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, we get identities for the hypergeometric series
Representation theory and mathematical physics : conference in honor of Gregg Zuckerman's 60th birthday, October 24-27, 2009, Yale University
This volume contains the proceedings of the conference on Representation Theory and Mathematical Physics, in honor of Gregg Zuckerman's 60th birthday, held October 24-27, 2009, at Yale University. Lie groups and their representations play a fundamental role of mathematics, in particular because of connections to geometry, topology, number theory, physics, combinatorics, and many other areas. Representation theory is one of the cornerstones of the Langlands program in number theory, dating to the 1970s. Zuckerman's work on derived functors, the translation principle, and coherent continuation lie at the heart of the modern theory of representations of Lie groups. One of the major unsolved problems in representation theory is that of the unitary dual. The fact that there is, in principle, a finite algorithm for computing the unitary dual relies heavily on Zuckerman's work. In recent years there has been a fruitful interplay between mathematics and physics, in geometric representation theory, string theory, and other areas. New developments on chiral algebras, representation theory of affine Kac-Moody algebras, and the geometric Langlands correspondence are some of the focal points of this volume. Recent developments in the geometric Langlands program point to exciting connections between certain automorphic representations and dual fibrations in geometric mirror symmetry.
Centers of weight-homogeneous polynomial vector fields on the plane
We characterize all centers of planar weight-homogeneous polynomial vector fields. Moreover we classify all centers of planar weight- homogeneous polynomial vector fields of degrees 66 and 77.