Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
440
result(s) for
"polyphenolic compound"
Sort by:
Protective Effect of Highly Polymeric A-Type Proanthocyanidins from Seed Shells of Japanese Horse Chestnut (Aesculus turbinata BLUME) against Light-Induced Oxidative Damage in Rat Retina
by
Ishihara, Tomoe
,
Matsuoka, Yotaro
,
Ohira, Akihiro
in
active ingredients
,
Aesculus turbinata
,
albino
2018
Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O-glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. Highlights: The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms.
Journal Article
Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review
2022
Wound healing is an intricate process of tissue repair or remodeling that occurs in response to injury. Plants and plant-derived bioactive constituents are well explored in the treatment of various types of wounds. Curcumin is a natural polyphenolic substance that has been used since ancient times in Ayurveda for its healing properties, as it reduces inflammation and acts on several healing stages. Several research studies for curcumin delivery at the wound site reported the effectiveness of curcumin in eradicating reactive oxygen species and its ability to enhance the deposition of collagen, granulation tissue formation, and finally, expedite wound contraction. Curcumin has been widely investigated for its wound healing potential but its lower solubility and rapid metabolism, in addition to its shorter plasma half-life, have limited its applications in wound healing. As nanotechnology has proven to be an effective technique to accelerate wound healing by stimulating appropriate mobility through various healing phases, curcumin-loaded nanocarriers are used for targeted delivery at the wound sites. This review highlights the potential of curcumin and its nanoformulations, such as liposomes, nanoparticles, and nano-emulsions, etc. in wound healing. This paper emphasizes the numerous biomedical applications of curcumin which collectively prepare a base for its antibiofilm and wound-healing action.
Journal Article
Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review
by
Ficai, Denisa
,
Motelica, Ludmila
,
Petrisor, Gabriela
in
Acids
,
Antimicrobial agents
,
Delayed-Action Preparations
2022
Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). According to the biological studies, the essential oil and extracts of Melissa officinalis have active compounds that determine many pharmacological effects with potential medical uses. A new field of research has led to the development of controlled release systems with active substances from plants. Therefore, the essential oil or extract of Melissa officinalis has become a major target to be incorporated into various controlled release systems which allow a sustained delivery.
Journal Article
Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions
by
Rosa, Laura A. de la
,
Vargas-Requena, Claudia L.
,
Bustos-Jaimes, Ismael
in
Enzymes
,
Humans
,
Hydrogen Bonding
2017
The digestive enzymes–polyphenolic compounds (PCs) interactions behind the inhibition of these enzymes have not been completely studied. The existing studies have mainly analyzed polyphenolic extracts and reported inhibition percentages of catalytic activities determined by UV-Vis spectroscopy techniques. Recently, pure PCs and new methods such as isothermal titration calorimetry and circular dichroism have been applied to describe these interactions. The present review focuses on PCs structural characteristics behind the inhibition of digestive enzymes, and progress of the used methods. Some characteristics such as molecular weight, number and position of substitution, and glycosylation of flavonoids seem to be related to the inhibitory effect of PCs; also, this effect seems to be different for carbohydrate-hydrolyzing enzymes and proteases. The digestive enzyme–PCs molecular interactions have shown that non-covalent binding, mostly by van der Waals forces, hydrogen binding, hydrophobic binding, and other electrostatic forces regulate them. These interactions were mainly associated to non-competitive type inhibitions of the enzymatic activities. The present review emphasizes on the digestive enzymes such as α-glycosidase (AG), α-amylase (PA), lipase (PL), pepsin (PE), trypsin (TP), and chymotrypsin (CT). Existing studies conducted in vitro allow one to elucidate the characteristics of the structure–function relationships, where differences between the structures of PCs might be the reason for different in vivo effects.
Journal Article
Chemical Constituents of Stinging Nettle (Urtica dioica L.): A Comprehensive Review on Phenolic and Polyphenolic Compounds and Their Bioactivity
2024
Polyphenolic compounds are of great interest in today’s science. Naturally, they occur in plants and other sources in many different forms. Their wide range of biological activity has attracted the attention of the scientific community. One of the sources of phenolic compounds is stinging nettle (Urtica dioica L.), a common plant in almost all parts of the world. A long tradition of utilization and an interesting chemical profile make this plant a fascinating and extensive object of study. The chemical profile also allows this plant to be used as a food and a pigment source in the food, pharmaceutical, and cosmetic industries. Previously conducted studies found phenolic acids and polyphenolic compounds in root, stalk, and stinging nettle leaves. Different extraction techniques were usually used to isolate them from the leaves. Obtained extracts were used to investigate biological activity further or formulate different functional food products. This study aimed to collect all available knowledge about this plant, its chemical composition, and biological activity and to summarize this knowledge with particular attention to polyphenolic compounds and the activity and mechanisms of their actions.
Journal Article
Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid
by
Lacal, Pedro M.
,
Tentori, Lucio
,
De Martino, Maria Gabriella
in
angiogenesis
,
Angiogenesis Inhibitors - chemistry
,
Angiogenesis Inhibitors - pharmacology
2018
Ellagic acid (EA) is a naturally occurring polyphenolic compound endowed with strong antioxidant and anticancer properties that is present in high quantity in a variety of berries, pomegranates, and dried fruits. The antitumor activity of EA has been mostly attributed to direct antiproliferative and apoptotic effects. Moreover, EA can inhibit tumour cell migration, extra-cellular matrix invasion and angiogenesis, all processes that are crucial for tumour infiltrative behaviour and the metastatic process. In addition, EA may increase tumour sensitivity to chemotherapy and radiotherapy. The aim of this review is to summarize the in vitro and in vivo experimental evidence supporting the anticancer activity of pure EA, its metabolites, and EA-containing fruit juice or extracts in a variety of solid tumour models. The EA oral administration as supportive therapy to standard chemotherapy has been recently evaluated in small clinical studies with colorectal or prostate cancer patients. Novel formulations with improved solubility and bioavailability are expected to fully develop the therapeutic potential of EA derivatives in the near future.
Journal Article
Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent
by
Ali, Muhammad
,
Benfante, Viviana
,
Di Raimondo, Domenico
in
Amino acids
,
Angiogenesis
,
anticancer properties
2024
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound’s bioavailability and therapeutic effectiveness.
Journal Article
Marine Polysaccharides in Pharmaceutical Applications: Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field
by
Costa Lima, Sofia A.
,
Coutinho, Ana Joyce
,
Reis, Salette
in
Algae
,
Anti-Bacterial Agents - administration & dosage
,
Anti-Bacterial Agents - chemistry
2019
The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.
Journal Article
A Review on Stems Composition and Their Impact on Wine Quality
2021
Often blamed for bringing green aromas and astringency to wines, the use of stems is also empirically known to improve the aromatic complexity and freshness of some wines. Although applied in different wine-growing regions, stems use remains mainly experimental at a cellar level. Few studies have specifically focused on the compounds extracted from stems during fermentation and maceration and their potential impact on the must and wine matrices. We identified current knowledge on stem chemical composition and inventoried the compounds likely to be released during maceration to consider their theoretical impact. In addition, we investigated existing studies that examined the impact of either single stems or whole clusters on the wine quality. Many parameters influence stems’ effect on the wine, especially grape variety, stem state, how stems are incorporated, when they are added, and contact duration. Other rarely considered factors may also have an impact, including vintage and ripening conditions, which could affect the lignification of the stem.
Journal Article
Grapevine as a Rich Source of Polyphenolic Compounds
by
Stupić, Domagoj
,
Marković, Zvjezdana
,
Tomaz, Ivana
in
Antioxidants - analysis
,
Cardiovascular disease
,
Cavitation
2020
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Journal Article