Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,425 result(s) for "population extinction"
Sort by:
Effect of Habitat Fragmentation on the Extinction Threshold: A Synthesis
I reviewed and reconciled predictions of four models on the effect of habitat fragmentation on the population extinction threshold, and I compared these predictions to results from empirical studies. All four models predict that habitat fragmentation can, under some conditions, increase the extinction threshold such that, in more fragmented landscapes, more habitat is required for population persistence. However, empirical studies have shown both positive and negative effects of habitat fragmentation on population abundance and distribution with about equal frequency, suggesting that the models lack some important process(es). The two colonization-extinction (CE) models predict that fragmentation can increase the extinction threshold by up to 60-80%; i.e., the amount of habitat required for persistence can shift from <5% of the landscape to >80% of the landscape, with a shift from completely clumped to completely fragmented habitat. The other two models (birth-immigration-death -emigration, or BIDE models) predict much smaller potential effects of fragmentation on the extinction threshold, of no more than a 10-20% shift in the amount of habitat required for persistence. This difference has important implications for conservation. If fragmentation can have a large effect on the extinction threshold, then alteration of habitat pattern (independent of habitat amount) can be an effective tool for conservation. On the other hand, if the effects of fragmentation on the extinction threshold are small, then this is a limited option. I suggest that the difference in model predictions results from differences in the mechanisms by which the models produce the extinction threshold. In the CE models, the threshold occurs by an assumed reduction in colonization rate with decreasing habitat amount. In the BIDE models, loss of habitat is assumed to increase the proportion of the population that spends time in the matrix, where reproduction is not possible and the mortality rate is assumed to be higher (than in breeding habitat). Habitat loss therefore decreases the overall reproduction rate and increases the overall mortality rate on the landscape. I hypothesize that this imposes a constraint on the potential for habitat fragmentation to mitigate effects of habitat loss in BIDE models. To date, empirical studies of the independent effects of habitat loss and fragmentation suggest that habitat loss has a much larger effect than habitat fragmentation on the distribution and abundance of birds, supporting the BIDE model prediction, at least for this taxon.
Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines
The population extinction pulse we describe here shows, from a quantitative viewpoint, that Earth’s sixth mass extinction is more severe than perceived when looking exclusively at species extinctions. Therefore, humanity needs to address anthropogenic population extirpation and decimation immediately. That conclusion is based on analyses of the numbers and degrees of range contraction (indicative of population shrinkage and/or population extinctions according to the International Union for Conservation of Nature) using a sample of 27,600 vertebrate species, and on a more detailed analysis documenting the population extinctions between 1900 and 2015 in 177 mammal species. We find that the rate of population loss in terrestrial vertebrates is extremely high—even in “species of low concern.” In our sample, comprising nearly half of known vertebrate species, 32% (8,851/27,600) are decreasing; that is, they have decreased in population size and range. In the 177 mammals for which we have detailed data, all have lost 30% or more of their geographic ranges and more than 40% of the species have experienced severe population declines (>80% range shrinkage). Our data indicate that beyond global species extinctions Earth is experiencing a huge episode of population declines and extirpations, which will have negative cascading consequences on ecosystem functioning and services vital to sustaining civilization. We describe this as a “biological annihilation” to highlight the current magnitude of Earth’s ongoing sixth major extinction event.
Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction
The ongoing sixth mass species extinction is the result of the destruction of component populations leading to eventual extirpation of entire species. Populations and species extinctions have severe implications for society through the degradation of ecosystem services. Here we assess the extinction crisis from a different perspective. We examine 29,400 species of terrestrial vertebrates, and determine which are on the brink of extinction because they have fewer than 1,000 individuals. There are 515 species on the brink (1.7% of the evaluated vertebrates). Around 94% of the populations of 77 mammal and bird species on the brink have been lost in the last century. Assuming all species on the brink have similar trends, more than 237,000 populations of those species have vanished since 1900. We conclude the human-caused sixth mass extinction is likely accelerating for several reasons. First, many of the species that have been driven to the brink will likely become extinct soon. Second, the distribution of those species highly coincides with hundreds of other endangered species, surviving in regions with high human impacts, suggesting ongoing regional biodiversity collapses. Third, close ecological interactions of species on the brink tend to move other species toward annihilation when they disappear—extinction breeds extinctions. Finally, human pressures on the biosphere are growing rapidly, and a recent example is the current coronavirus disease 2019 (Covid-19) pandemic, linked to wildlife trade. Our results reemphasize the extreme urgency of taking much-expanded worldwide actions to save wild species and humanity’s crucial life-support systems from this existential threat.
Lizards from warm and declining populations are born with extremely short telomeres
Aging is the price to pay for acquiring and processing energy through cellular activity and life history productivity. Climate warming can exacerbate the inherent pace of aging, as illustrated by a faster erosion of protective telomere DNA sequences. This biomarker integrates individual pace of life and parental effects through the germline, but whether intra- and intergenerational telomere dynamics underlies population trends remains an open question. Here, we investigated the covariation between life history, telomere length (TL), and extinction risk among three age classes in a cold-adapted ectotherm ( Zootoca vivipara ) facing warming-induced extirpations in its distribution limits. TL followed the same threshold relationships with population extinction risk at birth, maturity, and adulthood, suggesting intergenerational accumulation of accelerated aging rate in declining populations. In dwindling populations, most neonates inherited already short telomeres, suggesting they were born physiologically old and unlikely to reach recruitment. At adulthood, TL further explained females’ reproductive performance, switching from an index of individual quality in stable populations to a biomarker of reproductive costs in those close to extirpation. We compiled these results to propose the aging loop hypothesis and conceptualize how climate-driven telomere shortening in ectotherms may accumulate across generations and generate tipping points before local extirpation.
Reviewing the consequences of genetic purging on the success of rescue programs
Genetic rescue is increasingly considered a promising and underused conservation strategy to reduce inbreeding depression and restore genetic diversity in endangered populations, but the empirical evidence supporting its application is limited to a few generations. Here we discuss on the light of theory the role of inbreeding depression arising from partially recessive deleterious mutations and of genetic purging as main determinants of the medium to long-term success of rescue programs. This role depends on two main predictions: (1) The inbreeding load hidden in populations with a long stable demography increases with the effective population size; and (2) After a population shrinks, purging tends to remove its (partially) recessive deleterious alleles, a process that is slower but more efficient for large populations than for small ones. We also carry out computer simulations to investigate the impact of genetic purging on the medium to long term success of genetic rescue programs. For some scenarios, it is found that hybrid vigor followed by purging will lead to sustained successful rescue. However, there may be specific situations where the recipient population is so small that it cannot purge the inbreeding load introduced by migrants, which would lead to increased fitness inbreeding depression and extinction risk in the medium to long term. In such cases, the risk is expected to be higher if migrants came from a large non-purged population with high inbreeding load, particularly after the accumulation of the stochastic effects ascribed to repeated occasional migration events. Therefore, under the specific deleterious recessive mutation model considered, we conclude that additional caution should be taken in rescue programs. Unless the endangered population harbors some distinctive genetic singularity whose conservation is a main concern, restoration by continuous stable gene flow should be considered, whenever feasible, as it reduces the extinction risk compared to repeated occasional migration and can also allow recolonization events.
How frequency‐dependent selection affects population fitness, maladaptation and evolutionary rescue
Frequency‐dependent (FD) selection is a central process maintaining genetic variation and mediating evolution of population fitness. FD selection has attracted interest from researchers in a wide range of biological subdisciplines, including evolutionary genetics, behavioural ecology and, more recently, community ecology. However, the implications of frequency dependence for applied biological problems, particularly maladaptation, biological conservation and evolutionary rescue remain underexplored. The neglect of FD selection in conservation is particularly unfortunate. Classical theory, dating back to the 1940s, demonstrated that frequency dependence can either increase or decrease population fitness. These evolutionary consequences of FD selection are relevant to modern concerns about population persistence and the capacity of evolution to alleviate extinction risks. But exactly when should we expect FD selection to increase versus decrease absolute fitness and population growth? And how much of an impact is FD selection expected to have on population persistence versus extinction in changing environments? The answers to these questions have implications for evolutionary rescue under climate change and may inform strategies for managing threatened populations. Here, we revisit the core theory of FD selection, reviewing classical single‐locus models of population genetic change and outlining short‐ and long‐run consequences of FD selection for the evolution of population fitness. We then develop a quantitative genetic model of evolutionary rescue in a deteriorating environment, with population persistence hinging upon the evolution of a quantitative trait subject to both frequency‐dependent and frequency‐independent natural selection. We discuss the empirical literature pertinent to this theory, which supports key assumptions of our model. We show that FD selection can promote population persistence when it aligns with the direction of frequency‐independent selection imposed by abiotic environmental conditions. However, under most scenarios of environmental change, FD selection limits a population's evolutionary responsiveness to changing conditions and narrows the rate of environmental change that is evolutionarily tolerable.
Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory
Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps.
Pacific Salmon Extinctions: Quantifying Lost and Remaining Diversity
Widespread population extirpations and the consequent loss of ecological, genetic, and life-history diversity can lead to extinction of evolutionarily significant units (ESUs) and species. We attempted to systematically enumerate extinct Pacific salmon populations and characterize lost ecological, life history, and genetic diversity types among six species of Pacific salmon (Chinook [Oncorhynchus tshawytscha], sockeye [O. nerka], coho [O. kisutch], chum [O. keta], and pink salmon [O. gorbuscha] and steelhead trout [O. mykiss]) from the western contiguous United States. We estimated that, collectively, 29% of nearly 1400 historical populations of these six species have been lost from the Pacific Northwest and California since Euro-American contact. Across all species there was a highly significant difference in the proportion of population extinctions between coastal (0.14 extinct) and interior (0.55 extinct) regions. Sockeye salmon (which typically rely on lacustrine habitats for rearing) and stream-maturing Chinook salmon (which stay in freshwater for many months prior to spawning) had significantly higher proportional population losses than other species and maturation types. Aggregate losses of major ecological, life-history, and genetic biodiversity components across all species were estimated at 33%, 15%, and 27%, respectively. Collectively, we believe these population extirpations represent a loss of between 16% and 30% of all historical ESUs in the study area. On the other hand, over two-thirds of historical Pacific salmon populations in this area persist, and considerable diversity remains at all scales. Because over one-third of the remaining populations belong to threatened or endangered species listed under the U.S. Endangered Species Act, it is apparent that a critical juncture has been reached in efforts to preserve what remains of Pacific salmon diversity. It is also evident that persistence of existing, and evolution of future, diversity will depend on the ability of Pacific salmon to adapt to anthropogenically altered habitats.
Scaling the extinction vortex: Body size as a predictor of population dynamics close to extinction events
Mutual reinforcement between abiotic and biotic factors can drive small populations into a catastrophic downward spiral to extinction—a process known as the “extinction vortex.” However, empirical studies investigating extinction dynamics in relation to species' traits have been lacking. We assembled a database of 35 vertebrate populations monitored to extirpation over a period of at least ten years, represented by 32 different species, including 25 birds, five mammals, and two reptiles. We supplemented these population time series with species‐specific mean adult body size to investigate whether this key intrinsic trait affects the dynamics of populations declining toward extinction. We performed three analyses to quantify the effects of adult body size on three characteristics of population dynamics: time to extinction, population growth rate, and residual variability in population growth rate. Our results provide support for the existence of extinction vortex dynamics in extirpated populations. We show that populations typically decline nonlinearly to extinction, while both the rate of population decline and variability in population growth rate increase as extinction is approached. Our results also suggest that smaller‐bodied species are particularly prone to the extinction vortex, with larger increases in rates of population decline and population growth rate variability when compared to larger‐bodied species. Our results reaffirm and extend our understanding of extinction dynamics in real‐life extirpated populations. In particular, we suggest that smaller‐bodied species may be at greater risk of rapid collapse to extinction than larger‐bodied species, and thus, management of smaller‐bodied species should focus on maintaining higher population abundances as a priority. Our results reaffirm and extend our understanding of extinction dynamics in real‐life extirpated populations. In particular, we suggest that smaller‐bodied species may be at greater risk of rapid collapse to extinction than larger‐bodied species, and thus management of smaller‐bodied species should focus on maintaining higher population abundances as a priority.
Population dynamics with spatial structure and an Allee effect
Population dynamics including a strong Allee effect describe the situation where long-term population survival or extinction depends on the initial population density. A simple mathematical model of an Allee effect is one where initial densities below the threshold lead to extinction, whereas initial densities above the threshold lead to survival. Mean-field models of population dynamics neglect spatial structure that can arise through short-range interactions, such as competition and dispersal. The influence of non-mean-field effects has not been studied in the presence of an Allee effect. To address this, we develop an individual-based model that incorporates both short-range interactions and an Allee effect. To explore the role of spatial structure we derive a mathematically tractable continuum approximation of the IBM in terms of the dynamics of spatial moments. In the limit of long-range interactions where the mean-field approximation holds, our modelling framework recovers the mean-field Allee threshold. We show that the Allee threshold is sensitive to spatial structure neglected by mean-field models. For example, there are cases where the mean-field model predicts extinction but the population actually survives. Through simulations we show that our new spatial moment dynamics model accurately captures the modified Allee threshold in the presence of spatial structure.