Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"post-fire mortality"
Sort by:
Drought before fire increases tree mortality after fire
by
Wright, Micah C.
,
Cansler, C. Alina
,
Shearman, Timothy M.
in
Abies concolor
,
Artificial intelligence
,
Bark
2024
Fire and drought are expected to increase in frequency and severity in temperate forests due to climate change. To evaluate whether drought increases the likelihood of post‐fire tree mortality, we used a large database of tree survival and mortality from 32 years of wildland fires covering four dominant western North American conifers. We used Bayesian hierarchical modeling to predict the probability of individual tree mortality after fire based on species—Pinus contorta (lodgepole pine), Abies concolor (white fir), Pseudotsuga menziesii (Douglas‐fir), and Pinus ponderosa (ponderosa pine)—bark thickness, bark char, percentage live tree crown scorched or consumed crown volume scorch (CVS), and mean annual climatic water deficit (CWD) anomalies the year pre‐fire and fire year relative to the 1985–2015 reference period. Although crown injury was the primary determinant of tree mortality after fire, drought increased likelihood of death, with a 2‐SD increase in CWD (+115.7) resulting in a 78% increase in the probability of mortality. We assessed the crown scorch level expected to result in >50% probability of mortality under different CWD scenarios: observed CWD, CWD of +2, and +4°C warming scenarios. Increased climatic moisture stress amplified tree death, reducing the threshold that causes tree mortality across all conifers under +4°C warming, with more subtle and species‐specific reductions for the +2°C scenario. Models predicting post‐fire tree mortality are components of global and regional carbon estimates, habitat suitability assessments, and forest management planning and decision support systems. The amplifying effects of drought on post‐fire tree mortality and predicted future climates are likely to lead to higher tree mortality following fires in forested landscapes of western North America and may have cascading effects on ecosystem services and future forest resilience.
Journal Article
Tree crown injury from wildland fires
by
Aubrey, Doug. P.
,
Hood, Sharon M.
,
Shearman, Timothy M.
in
Air temperature
,
Biogeochemistry
,
Carbohydrates
2021
The dead foliage of scorched crowns is one of the most conspicuous signatures of wildland fires. Globally, crown scorch from fires in savannas, woodlands and forests causes tree stress and death across diverse taxa. The term crown scorch, however, is inconsistently and ambiguously defined in the literature, causing confusion and conflicting interpretation of results. Furthermore, the underlying mechanisms causing foliage death from fire are poorly understood. The consequences of crown scorch – alterations in physiological, biogeochemical and ecological processes and ecosystem recovery pathways – remain largely unexamined. Most research on the topic assumes the mechanism of leaf and bud death is exposure to lethal air temperatures, with few direct measurements of lethal heating thresholds. Notable information gaps include how energy transfer injures and kills leaves and buds, how nutrients, carbohydrates, and hormones respond, and what physiological consequences lead to mortality. We clarify definitions to encourage use of unified terminology for foliage and bud necrosis resulting from fire. We review the current understanding of the physical mechanisms driving foliar injury, discuss the physiological responses, and explore novel ecological consequences of crown injury from fire. From these elements, we propose research needs for the increasingly interdisciplinary study of fire effects.
Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
by
van Mantgem, Phillip
,
Hood, Sharon M
,
Varner, J Morgan
in
Biodiversity
,
Carbon sequestration
,
climate-mediated fire effects
2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291-7), which was developed from a limited number of species, stretching model assumptions beyond intended limits. We review the current understanding of the mechanisms of fire-induced tree mortality, provide recommended standardized terminology, describe model applications and limitations, and conclude with key knowledge gaps and future directions for research. We suggest a two-pronged approach to future research: (1) continued improvements and evaluations of empirical models to quantify uncertainty and incorporate new regions and species and (2) acceleration of basic, physiological research on the proximate and ultimate causes of fire-induced tree mortality to incorporate processes of tree death into models. Advances in both empirical and process fire-induced tree modeling will allow creation of hybrid models that could advance understanding of how fire injures and kills trees, while improving prediction accuracy of fire-driven feedbacks on ecosystems and landscapes, particularly under novel future conditions.
Journal Article
Prescribed fire science: the case for a refined research agenda
by
Kobziar, Leda N.
,
Godwin, David
,
Hood, Sharon M.
in
Biomedical and Life Sciences
,
Controlled burning
,
Ecology
2020
The realm of wildland fire science encompasses both wild and prescribed fires. Most of the research in the broader field has focused on wildfires, however, despite the prevalence of prescribed fires and demonstrated need for science to guide its application. We argue that prescribed fire science requires a fundamentally different approach to connecting related disciplines of physical, natural, and social sciences. We also posit that research aimed at questions relevant to prescribed fire will improve overall wildland fire science and stimulate the development of useful knowledge about managed wildfires. Because prescribed fires are increasingly promoted and applied for wildfire management and are intentionally ignited to meet policy and land manager objectives, a broader research agenda incorporating the unique features of prescribed fire is needed. We highlight the primary differences between prescribed fire science and wildfire science in the study of fuels, fire behavior, fire weather, fire effects, and fire social science. Wildfires managed for resource benefits (“managed wildfires”) offer a bridge for linking these science frameworks. A recognition of the unique science needs related to prescribed fire will be key to addressing the global challenge of managing wildland fire for long-term sustainability of natural resources.
Journal Article
Burn weather and three-dimensional fuel structure determine post-fire tree mortality
2020
ContextPost-fire tree mortality is a spatially structured process driven by interacting factors across multiple scales. However, empirical models of fire-caused tree mortality are generally not spatially explicit, do not differentiate among scales, and do not differentiate immediate from delayed mortality.ObjectivesWe aimed to quantify cross-scale linkages between forest structure—including spatial patterns of trees—and the progression of mortality 1–4 years post-fire in terms of rates, causes, and underlying demography.MethodsWe used data from a long-term study site in the Sierra Nevada, California to build a post-fire tree mortality model predicted by lidar-measured estimates of structure. We calculated structural metrics at scales from individual trees to 90 × 90 m neighborhoods and combined them with metrics for topography, site water balance, and burn weather to predict immediate and delayed post-fire tree mortality.ResultsMortality rates decreased while average diameter of newly killed trees increased each year post-fire. Burn weather predictors as well as interactive terms across scales improved model fit and parsimony. Including landscape-scale information improved finer-scale predictions but not vice versa. The amount of fuel, fuel configuration, and burning conditions predicted total mortality at broader scales while tree group-scale fuel connectivity, tree species fire tolerance, and local stresses predicted the fine-scale distribution, timing, and agents of mortality.ConclusionsLandscape-scale conditions provide the template upon which finer-scale variation in post-fire tree mortality is arranged. Post-fire forest structure is associated with the etiologies of different mortality agents, and so landscape-level heterogeneity is a key part of ecosystem stability and resilience.
Journal Article
Modeling post-fire mortality in pure and mixed forest stands in Portugal - A forest planning-oriented model
2017
Assessing impacts of management strategies may allow designing more resistant forests to wildfires. Planning-oriented models to predict the effect of stand structure and forest composition on mortality for supporting fire-smart management decisions, and allowing its inclusion in forest management optimization systems were developed. Post-fire mortality was modeled as a function of measurable forest inventory data and projections over time in 165 pure and 76 mixed forest stands in Portugal, collected by the 5th National Forest Inventory plots (NFI) plus other sample plots from ForFireS project, intercepted within 2006–2008 wildfire perimeters’ data. Presence and tree survival were obtained by examining 2450 trees from 16 species one year after the wildfire occurrence. A set of logistic regression models were developed under a three-stage modeling system: firstly multiple fixed-effects at stand-level that comprises a sub-model to predict mortality from wildfire; and another for the proportion of dead trees on stands killed by fire. At tree-level due to the nested structure of the data analyzed (trees within stands), a mixed-effect model was developed to estimate mortality among trees in a fire event. The results imply that the variation of tree mortality decreases when tree diameter at breast height increases. Moreover, the relative mortality increases with stand density, higher altitude and steeper slopes. In the same conditions, conifers are more prone to die than eucalyptus and broadleaves. Pure stands of broadleaves exhibit noticeably higher fire resistance than mixed stands of broadleaves and others species composition.
Journal Article
Short-term stem mortality of 10 deciduous broadleaved species following prescribed burning in upland forests of the Southern US
2018
In upland forests of the Southern US, management is increasingly focussed on the restoration and maintenance of resilient structures and species compositions, with prescribed burning being the primary tool used to achieve these goals and objectives. In this study, we utilised an extensive dataset comprising 91 burn units and 210 plots across 13 National Park Service lands to examine the relationships between the probability of stem mortality (P(m)) 2 years after prescribed fire and stem size and direct fire effects for 10 common deciduous broadleaved species. Post-fire stem mortality ranged from 6.9% for Quercus alba to 58.9% for Sassafras albidum. The probability of stem mortality was positively associated with maximum bole char height (CHAR) and inversely related to diameter at breast height (DBH) for all 10 deciduous broadleaved species. Model goodness-of-fit varied, with the poorest fit generally associated with fire-tolerant species and best fit generally associated with fire sensitive species. The information presented contributes to our understanding of post-fire stem mortality and may contribute to the development of fire-related stem mortality models following prescribed burning for eastern tree species. Models should be validated with independent datasets across upland forests types to test for spatial relationships before widespread application.
Journal Article
Applying Electrical Resistance Tomography to Diagnose Trees Damaged by Surface Fire
2025
The Republic of Korea, with 64% forest coverage, is increasingly vulnerable to large-scale wildfires. This study employed electrical resistance tomography (ERT) to diagnose internal damage in Pinus densiflora trees following a surface fire in spring 2023. Of the 30 monitored trees, 5 died in 2023 and 6 more had died by 2024. Dead trees showed a 41% higher Bark Scorch Index (BSI) and a 10%–15% lower DBH and circumference than survivors. From July, ERT detected significant increases in high- (ERTR) and medium-resistance (ERTY) areas, while low-resistance (ERTB) regions declined. By September, ERTR and ERTY were 2.2 and 1.9 times higher in dead trees. Maximum resistivity (Rsmax) rose 6.1-fold to 3724 Ωm. One year post-fire, healthy areas in dead trees dropped below 18%. These findings indicate that internal defects develop gradually and accelerate in summer and winter, correlating with thermal and freeze–thaw stress. Early diagnosis within two months post-fire was unreliable, while post-summer assessments better distinguished trees at mortality risk. This study demonstrates ERT’s utility as a non-destructive tool for tracking post-fire damage and guiding forest restoration under increasing wildfire threats.
Journal Article
Resilience of Oregon white oak to reintroduction of fire
by
Varner, J. Morgan
,
Dunwiddie, Peter W.
,
Nemens, Deborah G.
in
Biomedical and Life Sciences
,
Burns
,
Controlled burning
2019
Background
Pacific Northwest USA oak woodlands and savannas are fire-resilient communities dependent on frequent, low-severity fire to maintain their structure and understory species diversity, and to prevent encroachment by fire-sensitive competitors. The re-introduction of fire into degraded ecosystems is viewed as essential to their restoration, yet can be fraught with unintended negative consequences. We examined the response of mature Oregon white oak (
Quercus garryana
Douglas ex Hook.; Garry oak) to “first entry” woodland restoration burns following long fire-free periods.
Results
Thirteen to twenty-five months post burn, topkill of oaks was minimal (3%) and mortality was rare in three prescribed burns, despite high levels (mean = 92%) of crown scorching, and irrespective of proportional duff consumption around oak bases (mean = 21%). Percentage of crown scorch volume was the strongest predictor of oak crown dieback, but response was highly variable, especially when canopy scorch was ≥80%. Comparison of our results with FOFEM (First Order Fire Effects Model), a common fire effects model, revealed high model inaccuracy, likely due to lack of a species-specific equation for prediction of Oregon white oak mortality.
Conclusions
The results of this study indicate that Oregon white oak is highly resistant to mortality in restoration burns, even following long fire-free intervals. Prescribed fire is not contraindicated in areas with extant mature oaks, and may promote oak regeneration via basal sprouting.
Journal Article
Fire effects on growth of the invasive exotic fern Lygodium microphyllum and implications for management
2020
The extremely invasive Old World Climbing Fern, Lygodium microphyllum, has invaded New World tropical and subtropical habitats. Lygodium microphyllum has indeterminate twining leaves that grow up on and shade out host shrubs and trees, their epiphytes, and the understory. This invasive plant threatens numerous native habitats in Florida USA and the Caribbean, including internationally valued conservation lands such as Everglades National Park. Fire, which can reduce or stimulate growth and/or reproduction in different plant species, is one intervention used to manage L. microphyllum, but the effects of burning on this species’ growth are unknown. We experimentally burned greenhouse-grown plants, then monitored their growth in response to burning for 18 months. We also clipped a subset of the greenhouse plants to determine whether fire effects were explained by aboveground biomass removal. In our experiment, fire either killed or reduced the regrowth of L. microphyllum plants. Burning killed 25% of the burned plants and slowed growth of the remaining burned plants for up to 18 months post-burn. Size had a significant effect on plant mortality: smaller burned plants had greater mortality than larger plants. Mechanically removing the aboveground biomass (leaves) by clipping did not kill any plants but reduced their growth as compared to controls in the first six months after treatment. Clipped plants, however, had substantially recovered after 12 months. Burned plants were more sensitive to drought than clipped or control plants. The results show that burning does more than remove biomass, compromising the root system and perhaps damaging the hydraulic support system, similar to the latent mortality effects of fire on forest trees. We discuss how fire could affect invasion by this species, incorporating fire effects on spore viability and dispersal, as well as on subsequent plant regrowth. These results show that fire is a useful management tool for L. microphyllum invasions that both kills plants and reduces plant regrowth for up to 18 months.
Journal Article