Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
186 result(s) for "post-genomic analysis and emerging technologies"
Sort by:
PROGgeneV2: enhancements on the existing database
Background We recently published PROGgene, a tool that can be used to study prognostic implications of genes in various cancers. The first version of the tool had several areas for improvement. In this paper we present some major enhancements we have made on the existing tool in the new version, PROGgeneV2. Results In PROGgeneV2, we have made several modifications to enhance survival analysis capability of the tool. First, we have increased the repository of public studies catalogued in our tool by almost two folds. We have also added additional functionalities to perform survival analysis in a variety of new ways. Survival analysis can now be performed on a) single genes b) multiple genes as a signature, c) ratio of expression of two genes, and d) curated/published gene signatures in new version. Users can now also adjust the survival analysis models for available covariates. Users can study prognostic implications of entire gene signatures in different cancer types, which are searchable by keywords. Also, unique to our tool, in the new version, users will be able to upload and use their own datasets to perform survival analysis on genes of interest. Conclusions We believe, like its predecessor, PROGGeneV2 will continue to be useful for the scientific community for formulating research hypotheses and designing mechanistic studies. With added datasets PROGgeneV2 is the most comprehensive survival analysis tool available. PROGgeneV2 is available at http://www.compbio.iupui.edu/proggene .
Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model
Background Gastric cancer is a considerable burden for worldwide patients. And diffuse gastric cancer is the most insidious subgroup with poor survival. The phenotypic characterization of the diffuse gastric cancer cell line can be useful for gastric cancer researchers. In this article, we aimed to characterize the diffuse gastric cancer cells with MRI and transcriptomic data. We hypothesized that gene expression pattern is associated with the phenotype of the cells and that the heterogeneous enhancement pattern and the high tumorigenicity of SNU484 can be modulated by the perturbation of the highly expressed gene. Methods We evaluated the 9.4 T magnetic resonance imaging and transcriptomic data of the orthotopic mice models from diffuse gastric cancer cells such as SNU484, Hs746T, SNU668, and KATO III. We included MKN74 as an intestinal cancer control cell. After comprehensive analysis integrating MRI and transcriptomic data, we selected CD34 and validated the effect by shRNA in the BALB/c nude mice models. Results SNU484, SNU668, Hs746T, and MKN74 formed orthotopic tumors by the 5 weeks after cell injection. The diffuse phenotype was found in the SNU484 and Hs746T. SNU484 was the only tumor showing the heterogeneous enhancement pattern on T2 images with a high level of CD34 expression. Knockdown of CD34 decreased the round-void shape in the H&E staining ( P  = 0.028), the heterogeneous T2 enhancement, and orthotopic tumorigenicity (100% vs 66.7%). The RNAseq showed that the suppressed CD34 is associated with the downregulated gene-sets of the extracellular matrix remodeling. Conclusion Suppression of CD34 in the human-originated gastric cancer cell suggests that it is important for the round-void histologic shape, heterogeneous enhancement pattern on MRI, and the growth of gastric cancer cell line.
Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization
Background Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction. Methods Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model. Results We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin. Conclusions Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.
Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
Background Gene-expression companion diagnostic tests, such as the Oncotype DX test, assess the risk of early stage Estrogen receptor (ER) positive (+) breast cancers, and guide clinicians in the decision of whether or not to use chemotherapy. However, these tests are typically expensive, time consuming, and tissue-destructive. Methods In this paper, we evaluate the ability of computer-extracted nuclear morphology features from routine hematoxylin and eosin (H&E) stained images of 178 early stage ER+ breast cancer patients to predict corresponding risk categories derived using the Oncotype DX test. A total of 216 features corresponding to the nuclear shape and architecture categories from each of the pathologic images were extracted and four feature selection schemes: Ranksum, Principal Component Analysis with Variable Importance on Projection (PCA-VIP), Maximum-Relevance, Minimum Redundancy Mutual Information Difference (MRMR MID), and Maximum-Relevance, Minimum Redundancy - Mutual Information Quotient (MRMR MIQ), were employed to identify the most discriminating features. These features were employed to train 4 machine learning classifiers: Random Forest, Neural Network, Support Vector Machine, and Linear Discriminant Analysis, via 3-fold cross validation. Results The four sets of risk categories, and the top Area Under the receiver operating characteristic Curve (AUC) machine classifier performances were: 1) Low ODx and Low mBR grade vs. High ODx and High mBR grade (Low-Low vs. High-High) (AUC = 0.83), 2) Low ODx vs. High ODx (AUC = 0.72), 3) Low ODx vs. Intermediate and High ODx (AUC = 0.58), and 4) Low and Intermediate ODx vs. High ODx (AUC = 0.65). Trained models were tested independent validation set of 53 cases which comprised of Low and High ODx risk, and demonstrated per-patient accuracies ranging from 75 to 86%. Conclusion Our results suggest that computerized image analysis of digitized H&E pathology images of early stage ER+ breast cancer might be able predict the corresponding Oncotype DX risk categories.
Prognostic characterization of OAS1/OAS2/OAS3/OASL in breast cancer
Background Prognostic biomarkers remain a focus in breast cancer during last decades. More reliable predictors to adequately characterize the prognosis of breast cancer are essential. The 2′-5′-oligoadenylate synthetases (OAS), composing of OAS1, OAS2, OAS3, and OAS-like (OASL), are interferon (IFN)-induced antiviral enzymes, with their prognostic roles remain to be characterized. Methods Prognostic values of OAS family members were assessed by multiple public available resources. Results High mRNA expression of OAS1 and OAS3 were correlated with worse prognosis for all breast cancer patients, whereas OAS2 was associated with favorable prognosis. The prognostic values of OAS family in different clinicopathologic subtypes were also characterized. In DNA methylation level, cg12560128 in OAS2, cg06800840 and cg26328872 in OASL showed significant prognostic values. The mRNA expression of OAS members signature in high/low risk overall survival groups was opposite to the high/low risk recurrence free survival groups. Neutrophil cell exhibited highest correlation with all OAS members in tumor immune infiltrating estimation. Conclusions This study provided new insight into the prognostic roles of OAS in breast cancer with potential mechanistic values.
An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification
Background Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in its early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods are costly and cumbersome due to the involvement of experienced experts as well as the requirements for the highly equipped environment. The recent advancements in computerized solutions for this diagnosis are highly promising with improved accuracy and efficiency. Methods In this article, a method for the identification and classification of the lesion based on probabilistic distribution and best features selection is proposed. The probabilistic distribution such as normal distribution and uniform distribution are implemented for segmentation of lesion in the dermoscopic images. Then multi-level features are extracted and parallel strategy is performed for fusion. A novel entropy-based method with the combination of Bhattacharyya distance and variance are calculated for the selection of best features. Only selected features are classified using multi-class support vector machine, which is selected as a base classifier. Results The proposed method is validated on three publicly available datasets such as PH2, ISIC (i.e. ISIC MSK-2 and ISIC UDA), and Combined (ISBI 2016 and ISBI 2017), including multi-resolution RGB images and achieved accuracy of 97.5%, 97.75%, and 93.2%, respectively. Conclusion The base classifier performs significantly better on proposed features fusion and selection method as compared to other methods in terms of sensitivity, specificity, and accuracy. Furthermore, the presented method achieved satisfactory segmentation results on selected datasets.
In silico cancer research towards 3R
Background Improving our understanding of cancer and other complex diseases requires integrating diverse data sets and algorithms. Intertwining in vivo and in vitro data and in silico models are paramount to overcome intrinsic difficulties given by data complexity. Importantly, this approach also helps to uncover underlying molecular mechanisms. Over the years, research has introduced multiple biochemical and computational methods to study the disease, many of which require animal experiments. However, modeling systems and the comparison of cellular processes in both eukaryotes and prokaryotes help to understand specific aspects of uncontrolled cell growth, eventually leading to improved planning of future experiments. According to the principles for humane techniques milestones in alternative animal testing involve in vitro methods such as cell-based models and microfluidic chips, as well as clinical tests of microdosing and imaging. Up-to-date, the range of alternative methods has expanded towards computational approaches, based on the use of information from past in vitro and in vivo experiments. In fact, in silico techniques are often underrated but can be vital to understanding fundamental processes in cancer. They can rival accuracy of biological assays, and they can provide essential focus and direction to reduce experimental cost. Main body We give an overview on in vivo, in vitro and in silico methods used in cancer research. Common models as cell-lines, xenografts, or genetically modified rodents reflect relevant pathological processes to a different degree, but can not replicate the full spectrum of human disease. There is an increasing importance of computational biology, advancing from the task of assisting biological analysis with network biology approaches as the basis for understanding a cell’s functional organization up to model building for predictive systems. Conclusion Underlining and extending the in silico approach with respect to the 3Rs for replacement , reduction and refinement will lead cancer research towards efficient and effective precision medicine. Therefore, we suggest refined translational models and testing methods based on integrative analyses and the incorporation of computational biology within cancer research.
High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining
Background Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte® – CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. Methods All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. Results AccuCyte – CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. Conclusion The AccuCyte – CyteFinder system is a comprehensive and sensitive platform for identification and characterization of CTCs that has been applied to the assessment of CTCs in cancer patient samples as well as the isolation of single cells for genomic analysis. It thus enables accurate non-invasive monitoring of CTCs and evolving cancer biology for personalized, molecularly-guided cancer treatment.
Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care
Background Hotspot mutations of the oncogenes BRAF and NRAS are the most common genetic alterations in cutaneous melanoma. Specific inhibitors of BRAF and MEK have shown significant survival benefits in large phase III trials. However, the prognostic significance of BRAF and NRAS mutations outside of clinical trials remains unclear. Methods The mutational status of BRAF (exon 15) and NRAS (exon 2 and 3) was determined in melanoma samples of 217 patients with pyrosequencing and Sanger sequencing. The genotypes were correlated with clinical outcomes and pathologic features of the primary tumors. Time to disease progression was calculated with the cumulative incidence function. Survival analyses were performed with Kaplan-Meier estimates and Cox proportional hazards regression analysis. Relative survival was calculated with the Ederer-II method. Treatment with BRAF and MEK inhibitors and immune checkpoint blockade (ICB) was allowed. Results Mutations in BRAF and NRAS were identified in 40.1 and 24.4% of cases, respectively. Concurrent mutations in both genes were detected in further 2.3%. The remaining 33.2% were wild type for the investigated exons (WT). BRAF mutations were significantly associated with younger age at first diagnosis ( p  < 0.001) and truncal localization of the culprit primary ( p  = 0.002). The nodular subtype was most common in the NRAS cohort. In addition, NRAS-mutant melanoma patients showed a higher frequency of nodal relapse ( p  = 0.013) and development of metastatic disease ( p  = 0.021). The time to loco-regional nodal relapse was shortest in NRAS-mutant melanoma ( p  = 0.002). Presence of NRAS mutation was an independent risk factor for disease progression in multivariate analysis (HR 2.01; 95% CI 1.02 – 3.98). BRAF-mutant melanoma patients showed a tendency for better overall and relative survival. Genotype was not a consistent risk factor in multivariate analysis. Instead, positive sentinel lymph node status (HR 2.65; 95% CI 1.15 – 6.10) and treatment with ICB in stage IV disease (HR 0.17; 95% CI 0.06–0.48) were significant multivariate risk factors. Conclusions NRAS-mutant tumors tended to behave more aggressively particularly in early stages of the disease in this high-risk melanoma population. Treatment with immune checkpoint blockade improved survival in stage IV disease in a real-world setting.
Prospective correlation between the patient microbiome with response to and development of immune-mediated adverse effects to immunotherapy in lung cancer
Background Though the gut microbiome has been associated with efficacy of immunotherapy (ICI) in certain cancers, similar findings have not been identified for microbiomes from other body sites and their correlation to treatment response and immune related adverse events (irAEs) in lung cancer (LC) patients receiving ICIs. Methods We designed a prospective cohort study conducted from 2018 to 2020 at a single-center academic institution to assess for correlations between the microbiome in various body sites with treatment response and development of irAEs in LC patients treated with ICIs. Patients must have had measurable disease, ECOG 0–2, and good organ function to be included. Data was collected for analysis from January 2019 to October 2020. Patients with histopathologically confirmed, advanced/metastatic LC planned to undergo immunotherapy-based treatment were enrolled between September 2018 and June 2019. Nasal, buccal and gut microbiome samples were obtained prior to initiation of immunotherapy +/− chemotherapy, at development of adverse events (irAEs), and at improvement of irAEs to grade 1 or less. Results Thirty-seven patients were enrolled, and 34 patients were evaluable for this report. 32 healthy controls (HC) from the same geographic region were included to compare baseline gut microbiota. Compared to HC, LC gut microbiota exhibited significantly lower α-diversity. The gut microbiome of patients who did not suffer irAEs were found to have relative enrichment of Bifidobacterium ( p  = 0.001) and Desulfovibrio ( p  = 0.0002). Responders to combined chemoimmunotherapy exhibited increased Clostridiales ( p  = 0.018) but reduced Rikenellaceae ( p  = 0.016). In responders to chemoimmunotherapy we also observed enrichment of Finegoldia in nasal microbiome, and increased Megasphaera but reduced Actinobacillus in buccal samples. Longitudinal samples exhibited a trend of α-diversity and certain microbial changes during the development and resolution of irAEs. Conclusions This pilot study identifies significant differences in the gut microbiome between HC and LC patients, and their correlation to treatment response and irAEs in LC. In addition, it suggests potential predictive utility in nasal and buccal microbiomes, warranting further validation with a larger cohort and mechanistic dissection using preclinical models. Trial registration ClinicalTrials.gov, NCT03688347 . Retrospectively registered 09/28/2018.