Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "post-model-selection estimator"
Sort by:
Least squares after model selection in high-dimensional sparse models
In this article we study post-model selection estimators that apply ordinary least squares (OLS) to the model selected by first-step penalized estimators, typically Lasso. It is well known that Lasso can estimate the nonparametric regression function at nearly the oracle rate, and is thus hard to improve upon. We show that the OLS post-Lasso estimator performs at least as well as Lasso in terms of the rate of convergence, and has the advantage of a smaller bias. Remarkably, this performance occurs even if the Lasso-based model selection \"fails\" in the sense of missing some components of the \"true\" regression model. By the \"true\" model, we mean the best s-dimensional approximation to the nonparametric regression function chosen by the oracle. Furthermore, OLS post-Lasso estimator can perform strictly better than Lasso, in the sense of a strictly faster rate of convergence, if the Lasso-based model selection correctly includes all components of the \"true\" model as a subset and also achieves sufficient sparsity. In the extreme case, when Lasso perfectly selects the \"true\" model, the OLS post-Lasso estimator becomes the oracle estimator. An important ingredient in our analysis is a new sparsity bound on the dimension of the model selected by Lasso, which guarantees that this dimension is at most of the same order as the dimension of the \"true\" model. Our rate results are nonasymptotic and hold in both parametric and nonparametric models. Moreover, our analysis is not limited to the Lasso estimator acting as a selector in the first step, but also applies to any other estimator, for example, various forms of thresholded Lasso, with good rates and good sparsity properties. Our analysis covers both traditional thresholding and a new practical, data-driven thresholding scheme that induces additional sparsity subject to maintaining a certain goodness of fit. The latter scheme has theoretical guarantees similar to those of Lasso or OLS post-Lasso, but it dominates those procedures as well as traditional thresholding in a wide variety of experiments.
Can One Estimate the Conditional Distribution of Post-Model-Selection Estimators?
We consider the problem of estimating the conditional distribution of a post-model-selection estimator where the conditioning is on the selected model. The notion of a post-model-selection estimator here refers to the combined procedure resulting from first selecting a model (e.g., by a model selection criterion such as AIC or by a hypothesis testing procedure) and then estimating the parameters in the selected model (e.g., by least-squares or maximum likelihood), all based on the same data set. We show that it is impossible to estimate this distribution with reasonable accuracy even asymptotically. In particular, we show that no estimator for this distribution can be uniformly consistent (not even locally). This follows as a corollary to (local) minimax lower bounds on the performance of estimators for this distribution. Similar impossibility results are also obtained for the conditional distribution of linear functions (e.g., predictors) of the post-model-selection estimator.
A bootstrap recipe for post-model-selection inference under linear regression models
We propose a general bootstrap recipe for estimating the distributions of post-model-selection least squares estimators under a linear regression model. The recipe constrains residual boot-strapping within the most parsimonious, approximately correct, models to yield a distribution estimator which is consistent provided any wrong candidate model is sufficiently separated from the approximately correct ones. Our theory applies to a broad class of model selection methods based on information criteria or sparse estimation. The empirical performance of our procedure is illustrated with simulated data.
ALMOST THE BEST OF THREE WORLDS: RISK, CONSISTENCY AND OPTIONAL STOPPING FOR THE SWITCH CRITERION IN NESTED MODEL SELECTION
We study the switch distribution, introduced by van Erven, Grünwald and De Rooij (2012), applied to model selection and subsequent estimation. While switching was known to be strongly consistent, here we show that it achieves minimax optimal parametric risk rates up to a log log n factor when comparing two nested exponential families, partially confirming a conjecture by Lauritzen (2012) and Cavanaugh (2012) that switching behaves asymptotically like the Hannan-Quinn criterion. Moreover, like Bayes factor model selection, but unlike standard significance testing, when one of the models represents a simple hypothesis, the switch criterion defines a robust null hypothesis test, meaning that its Type-I error probability can be bounded irrespective of the stopping rule. Hence, switching is consistent, insensitive to optional stopping and almost minimax risk optimal, showing that, Yang's (2005) impossibility result notwithstanding, it is possible to 'almost' combine the strengths of AIC and Bayes factor model selection.
Conditional Predictive Inference Post Model Selection
We give a finite-sample analysis of predictive inference procedures after model selection in regression with random design. The analysis is focused on a statistically challenging scenario where the number of potentially important explanatory variables can be infinite, where no regularity conditions are imposed on unknown parameters, where the number of explanatory variables in a \"good\" model can be of the same order as sample size and where the number of candidate models can be of larger order than sample size. The performance of inference procedures is evaluated conditional on the training sample. Under weak conditions on only the number of candidate models and on their complexity, and uniformly over all data-generating processes under consideration, we show that a certain prediction interval is approximately valid and short with high probability in finite samples, in the sense that its actual coverage probability is close to the nominal one and in the sense that its length is close to the length of an infeasible interval that is constructed by actually knowing the \"best\" candidate model. Similar results are shown to hold for predictive inference procedures other than prediction intervals like, for example, tests of whether a future response will lie above or below a given threshold.
Consistent Covariate Selection and Post Model Selection Inference in Semiparametric Regression
This paper presents a model selection technique of estimation in semiparametric regression models of the type$Y_i = \\beta ^\\prime \\b X_i + f(T_i) + W_i$, i = 1,..., n. The parametric and nonparametric components are estimated simultaneously by this procedure. Estimation is based on a collection of finite-dimensional models, using a penalized least squares criterion for selection. We show that by tailoring the penalty terms developed for nonparametric regression to semiparametric models, we can consistently estimate the subset of nonzero coefficients of the linear part. Moreover, the selected estimator of the linear component is asymptotically normal.