Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
392 result(s) for "post-quantum cryptography"
Sort by:
A Survey of Post-Quantum Cryptography: Start of a New Race
Information security is a fundamental and urgent issue in the digital transformation era. Cryptographic techniques and digital signatures have been applied to protect and authenticate relevant information. However, with the advent of quantum computers and quantum algorithms, classical cryptographic techniques have been in danger of collapsing because quantum computers can solve complex problems in polynomial time. Stemming from that risk, researchers worldwide have stepped up research on post-quantum algorithms to resist attack by quantum computers. In this review paper, we survey studies in recent years on post-quantum cryptography (PQC) and provide statistics on the number and content of publications, including a literature overview, detailed explanations of the most common methods so far, current implementation status, implementation comparisons, and discussion on future work. These studies focused on essential public cryptography techniques and digital signature schemes, and the US National Institute of Standards and Technology (NIST) launched a competition to select the best candidate for the expected standard. Recent studies have practically implemented the public key encryption/key encapsulation mechanism (PKE/KEM) and digital signature schemes on different hardware platforms and applied various optimization measures based on other criteria. Along with the increasing number of scientific publications, the recent trend of PQC research is increasingly evident and is the general trend in the cryptography industry. The movement opens up a promising avenue for researchers in public key cryptography and digital signatures, especially on algorithms selected by NIST.
Secure post‐quantum group key exchange: Implementing a solution based on Kyber
Quantum computing poses fascinating challenges for current cryptography, threatening the security of many schemes and protocols widely used today. To adapt to this reality, the U.S. National Institute for Standards and Technology (NIST) is currently running a standardization process in search of post‐quantum (classical, yet resistant to quantum attacks) cryptographic tools, focusing on signature schemes and key encapsulation mechanisms. Many of the competing proposals also include designs for two‐party key exchange, which can be combined in different ways to fit scenarios involving n≥2 $n \\ge 2$parties, that is, yielding group key exchange protocols. However, very few implementations of such group protocols are available to practitioners, which face a non‐trivial challenge when deciding how to implement a protocol for establishing secure group sessions in this new post‐quantum scenario. With this in mind, the authors report on the implementation of a secure post‐quantum group key exchange protocol in the so‐called Quantum Random Oracle Model. The protocol decided to implement is based on a KEM called Kyber, which is one of the finalists of the NIST competition. Not only this group construction is the only one available in the literature using a NIST finalist, but also, among all post‐quantum designs the authors are aware of, it uses this strongest security model (as, e.g. in other proposals, the adversarial interaction with the hash functions of the system is assumed to be exclusively classical). Furthermore, experimental evidence is provided supporting this choice in terms of performance, even if the number of involved entities is large (up to 2000). All data and code are publicly available. In this article, the authors report on the implementation of a post‐quantum group key exchange protocol, which is proven secure in the so‐called Quantum Random Oracle Model. It is based on a two‐party design called Kyber, which is a finalist in the NIST standardization contest for post‐quantum cryptographic designs. It is shown experimentally that it is suitable for practical scenarios, involving over 2000 participants.
A Survey about Post Quantum Cryptography Methods
Cryptography is an art of hiding the significant data or information with some other codes. It is a practice and study of securing information and communication. Thus, cryptography prevents third party intervention over the data communication. The cryptography technology transforms the data into some other form to enhance security and robustness against the attacks. The thrust of enhancing the security among data transfer has been emerged ever since the need of Artificial Intelligence field came into a market. Therefore, modern way of computing cryptographic algorithm came into practice such as AES, 3DES, RSA, Diffie-Hellman and ECC. These public-key encryption techniques now in use are based on challenging discrete logarithms for elliptic curves and complex factorization. However, those two difficult problems can be effectively solved with the help of sufficient large-scale quantum computer. The Post Quantum Cryptography (PQC) aims to deal with an attacker who has a large-scale quantum computer. Therefore, it is essential to build a robust and secure cryptography algorithm against most vulnerable pre-quantum cryptography methods. That is called ‘Post Quantum Cryptography’. Therefore, the present crypto system needs to propose encryption key and signature size is very large.in addition to careful prediction of encryption/decryption time and amount of traffic over the communication wire is required. The post-quantum cryptography (PQC) article discusses different families of post-quantum cryptosystems, analyses the current status of the National Institute of Standards and Technology (NIST) post-quantum cryptography standardisation process, and looks at the difficulties faced by the PQC community.
Improved lattice‐based mix‐nets for electronic voting
Mix‐networks were first proposed by Chaum in the late 1970s–early 1980s as a general tool for building anonymous communication systems. Classical mix‐net implementations rely on standard public key primitives (e.g., ElGamal encryption) that will become vulnerable when a sufficiently powerful quantum computer will be built. Thus, there is a need to develop quantum‐resistant mix‐nets. This article focuses on the application case of electronic voting where the number of votes to be mixed may reach hundreds of thousands or even millions. We propose an improved architecture for lattice‐based post‐quantum mix‐nets featuring more efficient zero‐knowledge proofs while maintaining established security assumptions. Our current implementation scales up to 100,000 votes, still leaving a lot of room for future optimisation.
Device-independent quantum key distribution from computational assumptions
In device-independent quantum key distribution (DIQKD), an adversary prepares a device consisting of two components, distributed to Alice and Bob, who use the device to generate a secure key. The security of existing DIQKD schemes holds under the assumption that the two components of the device cannot communicate with one another during the protocol execution. This is called the no-communication assumption in DIQKD. Here, we show how to replace this assumption, which can be hard to enforce in practice, by a standard computational assumption from post-quantum cryptography: we give a protocol that produces secure keys even when the components of an adversarial device can exchange arbitrary quantum communication, assuming the device is computationally bounded. Importantly, the computational assumption only needs to hold during the protocol execution—the keys generated at the end of the protocol are information-theoretically secure as in standard DIQKD protocols.
Device-independent oblivious transfer from the bounded-quantum-storage-model and computational assumptions
We present a device-independent protocol for oblivious transfer (DIOT) and analyse its security under the assumption that the receiver’s quantum storage is bounded during protocol execution and that the device behaves independently and identically in each round. We additionally require that, for each device component, the input corresponding to the choice of measurement basis, and the resulting output, is communicated only with the party holding that component. Our protocol is everlastingly secure and, compared to previous DIOT protocols, it is less strict about the non-communication assumptions that are typical from protocols that use Bell inequality violations; instead, the device-independence comes from a protocol for self-testing of a single (quantum) device which makes use of a post-quantum computational assumption.
The Impact of Quantum Computing on Present Cryptography
The aim of this paper is to elucidate the implications of quantum computing in present cryptography and to introduce the reader to basic post-quantum algorithms. In particular the reader can delve into the following subjects: present cryptographic schemes (symmetric and asymmetric), differences between quantum and classical computing, challenges in quantum computing, quantum algorithms (Shor’s and Grover’s), public key encryption schemes affected, symmetric schemes affected, the impact on hash functions, and post quantum cryptography. Specifically, the section of Post-Quantum Cryptography deals with different quantum key distribution methods and mathematicalbased solutions, such as the BB84 protocol, lattice-based cryptography, multivariate-based cryptography, hash-based signatures and code-based cryptography.
Post-Quantum Encryption Algorithms
The most used asymmetric encryption algorithm nowadays is RSA. It may become insecure regarding advances in the field of quantum computers. It is the reason why the National Institute of Standards and Technologies introduces the challenges of choosing a new post-quantum encryption standard. Initially, NIST received 82 submissions comprising key encapsulation mechanisms and digital signature schemes. However, only 69 of them were formally accepted after an initial review. In July 2022, NIST selected some algorithms for standardization. For the key encapsulation mechanism, Kyber was selected, and for digital signatures, Dilithium Falcon and SPHINCS+. After the third round concluded, NIST indicated it would continue to evaluate some of the alternative algorithms that were not selected as finalists in the third round. This ongoing evaluation is informally referred to as a \"fourth round.\" Initially, there were four participants - BIKE, Classic McEliece, SIKE, and HQC. However, the SIKE downfall with the Castryck-Decru attack was introduced in July 2022, and the HQC algorithm was chosen for standardization in March 2025. In our research, we examine all functions of BIKE, Classic McEliece, and the HQC from the point of view of time and memory consumption. The results obtained will help us during the implementation of the BIKE algorithm on ESP32.
Toward Quantum Secured Distributed Energy Resources: Adoption of Post-Quantum Cryptography (PQC) and Quantum Key Distribution (QKD)
Quantum computing is a game-changing technology that affects modern cryptography and security systems including distributed energy resources (DERs) systems. Since the new quantum era is coming soon in 5–10 years, it is crucial to prepare and develop quantum-safe DER systems. This paper provides a comprehensive review of vulnerabilities caused by quantum computing attacks, potential defense strategies, and remaining challenges for DER networks. First, new security vulnerabilities and attack models of the cyber-physical DER systems caused by quantum computing attacks are explored. Moreover, this paper introduces potential quantum attack defense strategies including Quantum Key Distribution (QKD) and Post-Quantum Cryptography (PQC), which can be applied to DER networks and evaluates defense strategies. Finally, remaining research opportunities and challenges for next-generation quantum-safe DER are discussed.
Resilience Optimization of Post-Quantum Cryptography Key Encapsulation Algorithms
Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor’s algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The NIST has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two PQC algorithms, both of which were selected as NIST fourth-round finalists. The research assessed the key generation, encapsulation, and decapsulation operations, providing insights into their efficiency and suitability for real-world applications. Further research and standardization efforts are required to enable secure and efficient post-quantum encryption. When selecting appropriate post-quantum encryption algorithms for specific applications, factors such as security levels, performance requirements, key sizes, and platform compatibility should be taken into account. This paper provides helpful insight for post-quantum cryptography researchers and practitioners, assisting in the decision-making process for selecting appropriate algorithms to protect confidential data in the age of quantum computing.