Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
184,169
result(s) for
"power control"
Sort by:
Voltage-Sourced Converters in Power Systems
by
Yazdani, Amirnaser
,
Iravani, Reza
in
Components, Circuits, Devices and Systems
,
Computing and Processing
,
Control
2010
Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System ApplicationsElectronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic convertersthe three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systemsincluding wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studiesThis comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.
Power electronics : circuits, devices, and applications
2004
Designed for undergraduate students in electrical and electronic engineering, this text covers the basics of emerging areas in power electronics and a broad range of topics such as power switching devices, conversion methods, analysis and techniques, and applications.
Power Quality in Power Systems and Electrical Machines
by
Masoum Mohammad A.S
,
Fuchs Ewald F
in
Electric power system stability
,
Electric power systems
,
Electric power systems - Quality control
2008,2011
Power quality of power systems affects all connected electrical and electronic equipment. Power quality is a measure of deviations in voltage and frequency of the particular supply system. In recent years, there has been a considerable increase in nonlinear loads; in particular distributed loads, such as computers, TV monitors and lighting. These draw harmonic currents which, when distorted, have detrimental effects including interference, loss of reliability, increased operating costs, equipment overheating, motor failures, capacitor failure and inaccurate power metering. This subject is pertinent to engineers involved with electric power systems, electronic equipment, computers and manufacturing equipment. This book shows readers to understand the causes and effects of power quality problems such as non-sinusoidal wave shapes, voltage outages, losses due to poor power quality, and origins of single-time events such as voltage dips, voltage reductions and outages, along with techniques to mitigate these problems.
Unified power flow controllers in smart power systems: models, methods, and future research
by
Hatziargyriou, Nikos D.
,
Georgilakis, Pavlos S.
in
Active control
,
active power flow control
,
Alternative energy sources
2019
Power flow control has become increasingly important in recent years in the area of smart power systems that have to integrate increased shares of variable renewable energy sources. The unified power flow controller (UPFC) provides in real‐time, simultaneously or selectively, active and reactive power flow control as well as voltage control in smart power systems. Several models and methods have been suggested for the control, analysis, operation, and planning of UPFCs in smart power systems. This study introduces a review of the state‐of‐the‐art models and methods of UPFCs in smart power systems, analysing and classifying current and future research trends in this field.
Journal Article
Deadbeat direct power control of three-phase pulse-width modulation rectifiers
by
Xie, Wei
,
Zhang, Yingchao
,
Zhang, Yongchang
in
AC‐DC power convertors
,
current harmonic spectrum
,
deadbeat active power control
2014
Direct power control (DPC) is a powerful control scheme for three-phase AC/DC converters, because of its decoupled control of active/reactive power and quick dynamic response with simple structure. However, relative high-power ripples at steady state and variable switching frequency can be observed in conventional DPC. Furthermore, the harmonic spectrum of current is broad and not easy to be filtered. This study tries to improve the steady-state performance of conventional DPC by using deadbeat power control. Two kinds of deadbeat control methods are proposed and the first one aims to achieve deadbeat control of active power, whereas the second one aims to achieve deadbeat control of both active power and reactive power. Compared with conventional DPC, the two deadbeat power control methods achieve significant steady-state performance improvement in terms of lower power ripples and less current harmonics, even if the sampling frequency is much lower. Moreover, the quick dynamic response of conventional DPC is maintained in the proposed methods. The two kinds of deadbeat methods are comparatively studied, with the basic DPC as the benchmark. The presented experimental results validate the effectiveness of the proposed deadbeat power control methods.
Journal Article
Power System Control Under Cascading Failures
by
Sun, Wei
,
Sun, Kai
,
Hou, Yunhe
in
Components, Circuits, Devices and Systems
,
Computing and Processing
,
Electric power failures
2018,2019
<p>OFFERS A COMPREHENSIVE INTRODUCTION TO THE ISSUES OF CONTROL OF POWER SYSTEMS DURING CASCADING OUTAGES AND RESTORATION PROCESS <p><i>Power System Control Under Cascading Failures</i> offers comprehensive coverage of three major topics related to prevention of cascading power outages in a power transmission grid: modelling and analysis, system separation and power system restoration. The book examines modelling and analysis of cascading failures for reliable and efficient simulation and better understanding of important mechanisms, as well as root causes and propagation patterns of failures and power outages. It also covers controlled system separation to mitigate cascading failures addressing key questions such as where, when and how to separate. The text explores optimal system restoration from cascading power outages and blackouts by well-designed milestones, optimised procedures and emerging techniques. <p>The authors — noted experts in the field — include state-of-the-art methods that are illustrated in detail as well as practical examples that show how to use them to address realistic problems and improve current practices. This important resource: <ul> <li>Contains comprehensive coverage of a focused area of cascading power system outages, addressing modelling and analysis, system separation and power system restoration</li> <li>Offers a description of theoretical models to analyse outages, methods to identify control actions to prevent propagation of outages and restore the system</li> <li>Suggests state-of-the-art methods that are illustrated in detail with hands-on examples that address realistic problems to help improve current practices</li> <li>Includes companion website with samples, codes and examples to support the text</li> </ul> <p>Written for postgraduate students, researchers, specialists, planners and operation engineers from industry, <i>Power System Control Under Cascading Failures</i> contains a review of a focused area of cascading power system outages, addresses modelling and analysis, system separation, and power system restoration