Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,448
result(s) for
"power electronic devices"
Sort by:
Silicon Carbide Converters and MEMS Devices for High-temperature Power Electronics: A Critical Review
2019
The significant advance of power electronics in today’s market is calling for high-performance power conversion systems and MEMS devices that can operate reliably in harsh environments, such as high working temperature. Silicon-carbide (SiC) power electronic devices are featured by the high junction temperature, low power losses, and excellent thermal stability, and thus are attractive to converters and MEMS devices applied in a high-temperature environment. This paper conducts an overview of high-temperature power electronics, with a focus on high-temperature converters and MEMS devices. The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology. Then, the research and development directions of SiC-based high-temperature converters in the fields of motor drives, rectifier units, DC–DC converters are discussed, as well as MEMS devices. Finally, the existing technical challenges facing high-temperature power electronics are identified, including gate drives, current measurement, parameters matching between each component, and packaging technology.
Journal Article
Technology and Applications of Wide Bandgap Semiconductor Materials: Current State and Future Trends
by
Denaï, Mouloud
,
Pissanidis, Georgios
,
Chaudhary, Omar Sarwar
in
Bibliometrics
,
Consumer electronics
,
Design
2023
Silicon (Si)-based semiconductor devices have long dominated the power electronics industry and are used in almost every application involving power conversion. Examples of these include metal-oxide-semiconductor field-effect transistors (MOSFETs), insulated-gate bipolar transistors (IGBTs), gate turn-off (GTO), thyristors, and bipolar junction transistor (BJTs). However, for many applications, power device requirements such as higher blocking voltage capability, higher switching frequencies, lower switching losses, higher temperature withstand, higher power density in power converters, and enhanced efficiency and reliability have reached a stage where the present Si-based power devices cannot cope with the growing demand and would usually require large, costly cooling systems and output filters to meet the requirements of the application. Wide bandgap (WBG) power semiconductor materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond (Dia) have recently emerged in the commercial market, with superior material properties that promise substantial performance improvements and are expected to gradually replace the traditional Si-based devices in various power electronics applications. WBG power devices can significantly improve the efficiency of power electronic converters by reducing losses and making power conversion devices smaller in size and weight. The aim of this paper is to highlight the technical and market potential of WBG semiconductors. A detailed short-term and long-term analysis is presented in terms of cost, energy impact, size, and efficiency improvement in various applications, including motor drives, automotive, data centers, aerospace, power systems, distributed energy systems, and consumer electronics. In addition, the paper highlights the benefits of WBG semiconductors in power conversion applications by considering the current and future market trends.
Journal Article
An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications
by
Rahman, Kazi Sajedur
,
Binzaid, Shuza
,
Pasupuleti, Jagadeesh
in
Alternative energy sources
,
Design
,
Efficiency
2021
In this paper, an integrated thermoelectric (TE) and photovoltaic (PV) hybrid energy harvesting system (HEHS) is proposed for self-powered internet of thing (IoT)-enabled wireless sensor networks (WSNs). The proposed system can run at a minimum of 0.8 V input voltage under indoor light illumination of at least 50 lux and a minimum temperature difference, ∆T = 5 °C. At the lowest illumination and temperature difference, the device can deliver 0.14 W of power. At the highest illumination of 200 lux and ∆T = 13 °C, the device can deliver 2.13 W. The developed HEHS can charge a 0.47 F, 5.5 V supercapacitor (SC) up to 4.12 V at the combined input voltage of 3.2 V within 17 s. In the absence of any energy sources, the designed device can back up the complete system for 92 s. The sensors can successfully send 39 data string to the webserver within this time at a two-second data transmission interval. A message queuing telemetry transport (MQTT) based IoT framework with a customised smartphone application ‘MQTT dashboard’ is developed and integrated with an ESP32 Wi-Fi module to transmit, store, and monitor the sensors data over time. This research, therefore, opens up new prospects for self-powered autonomous IoT sensor systems under fluctuating environments and energy harvesting regimes, however, utilising available atmospheric light and thermal energy.
Journal Article
Recent Developments and Challenges of Edge Termination Techniques for Vertical Diamond Schottky Barrier Diodes
2025
Thanks to its excellent material properties, diamond-based power electronic devices have garnered widespread attention. The realization of large-sized (over 2 inches) and high-quality single-crystal diamond wafers has significantly accelerated the industrialization of diamond semiconductor materials and devices. Over years of development, diamond Schottky barrier diodes (SBDs) have evolved into three primary device structures: lateral conduction type, quasi-vertical conduction type, and vertical conduction type. However, the performance of these devices has yet to fully unlock the potential of diamond materials. Efficient edge termination structures need to be designed to synergistically optimize the forward turn-on voltage, on-resistance, and off-state breakdown voltage. This paper reviews the research progress on various existing edge termination structures of diamond SBDs, analyzes the advantages of each structure, and discusses the key challenges faced in the device fabrication processes.
Journal Article
Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications
by
Rahman, Kazi Sajedur
,
Pasupuleti, Jagadeesh
,
Rokonuzzaman, Md
in
Alternative energy sources
,
Efficiency
,
Electronic devices
2020
In the past few years, the internet of things (IoT) has garnered a lot of attention owing to its significant deployment for fulfilling the global demand. It has been seen that power-efficient devices such as sensors and IoT play a significant role in our regular lives. However, the popularity of IoT sensors and low-power electronic devices is limited due to the lower lifetime of various energy resources which are needed for powering the sensors over time. For overcoming this issue, it is important to design and develop better, high-performing, and effective energy harvesting systems. In this article, different types of ambient energy harvesting systems which can power IoT-enabled sensors, as well as wireless sensor networks (WSNs), are reviewed. Various energy harvesting models which can increase the sustainability of the energy supply required for IoT devices are also discussed. Furthermore, the challenges which need to be overcome to make IoT-enabled sensors more durable, reliable, energy-efficient, and economical are identified.
Journal Article
A Review of Power Electronic Devices for Heavy Goods Vehicles Electrification: Performance and Reliability
2023
This review explores the performance and reliability of power semiconductor devices required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above); (ii) road electrification with overhead catenaries supplying power through a pantograph to the HGV powertrain; (iii) hydrogen supplying power to the powertrain through a fuel cell; (iv) any combination of the first three technologies. At the heart of the HGV powertrain is the power converter implemented through power semiconductor devices. Given that the HGV powertrain is rated typically between 500 kW and 1 MW, power devices with voltage ratings between 650 V and 1200 V are required for the off-board/on-board charger’s rectifier and DC-DC converter as well as the powertrain DC-AC traction inverter. The power devices available for HGV electrification at 650 V and 1.2 kV levels are SiC planar MOSFETs, SiC Trench MOSFETs, silicon super-junction MOSFETs, SiC Cascode JFETs, GaN HEMTs, GaN Cascode HEMTs and silicon IGBTs. The MOSFETs can be implemented with anti-parallel SiC Schottky diodes or can rely on their body diodes for third quadrant operation. This review examines the various power semiconductor technologies in terms of losses, electrothermal ruggedness under short circuits, avalanche ruggedness, body diode and conduction performance.
Journal Article
Design, implementation and validation of a new multi-level topology with fewer components
by
Das, Priyanath
,
Mahto, Kailash kumar
,
Mahato, Bidyut
in
Algorithms
,
Component reliability
,
Electromagnetic interference
2024
The paper proposes a new multilevel inverter (MLI) topology that is designed to overcome the challenges posed by conventional MLIs, which can have high costs and complexity due to the large number of power components. The proposed MLI is designed to work with both symmetric and asymmetric DC sources, and uses fewer power semiconductor switches compared to recently propose reduced components MLIs. The paper presents the ratio of voltage levels generated per power semiconductor switch, and the gate pulses for the inverter are generated using a DSPACE1103 controller. A prototype of the 7-level inverter is developed, and experimental outcomes are provided to evaluate the simulated results. The paper highlights the importance of reducing the number of power components in MLIs to reduce costs and improve reliability. The proposed MLI offers a promising solution to this challenge, while also maintaining the advantages of MLIs such as reduced harmonic distortion and electromagnetic interference. Overall, the research offers valuable insights into the design and performance of multilevel inverters, and the proposed topology has the potential to be a useful tool for researchers and engineers working in the field of power electronics.
Journal Article
Influence of Repetitive Square Voltage Duty Cycle on the Electrical Tree Characteristics of Epoxy Resin
2020
The application of wide band-gap power electronic devices brings more challenges to insulating packaging technology. Knowing the influence of applied voltage parameters on insulation performance is helpful to evaluate the insulation condition of electric power equipment. In this paper, the effect of repetitive square wave voltage duty cycle on the growth characteristics of electrical trees in epoxy resin was studied. The experimental results show that the square wave voltage duty cycle has a significant influence on treeing features. The electrical tree proportion initiation has shown a decreasing trend, and the shape of the electrical tree changes from pine-like to branch-like by increasing the duty cycles. The length and damaged area of electrical tree increased with the increase in the duty cycle up to 10% and then decrease by increasing the duty cycle higher than 30%. It indicates that a low duty cycle will enhance the electron injection and accumulate space charges and thus accelerate electrical tree development. Under short duty cycles, the electric field due to the shielding effect near the needle tip suppresses the electrical tree growth, which results in treeing growth stagnation. The obtained results are helpful to keep these parameters in mind during the design of epoxy-based insulation such high-voltage rotating machines and power electronic device packaging.
Journal Article
Automatic test-bench for SiC power devices using LabVIEW
by
Leuchter, Jan
,
Nguyen, Huy Hoang
,
Pham, Ngoc Nam
in
Computer engineering
,
Electrical engineering
,
Electronic devices
2024
This paper is devoted to the improvement existing models of electronics devices, which are used in powers electronics as switching devices, and investigate a LabVIEW-based automatic test-bench for Silicon carbide (SiC) power devices. In recent years, power electronic devices are required to be capable handle with higher voltage, leads to development of new generation of power electronic devices, such as SiC devices. However, using a simulation platform, such as Spice, to diminish the complexity of power electronic design with these new devices is hindered by the lack of precise models. The proposed test-bench enables not only measuring static characteristics of SiC power devices, but also extracting key parameters required by simulations. These extracted parameters are then employed in the existing device model, and the simulation results which are based on the model with original parameters and models with extracted parameters are compared with measured results. The comparison clearly demonstrates that parameters obtained from the proposed test-bench significantly enhance the Spice model.
Journal Article
An Improved Voltage Clamp Circuit Suitable for Accurate Measurement of the Conduction Loss of Power Electronic Devices
2021
Power electronic devices are essential components of high-capacity industrial converters. Accurate assessment of their power loss, including switching loss and conduction loss, is essential to improving electrothermal stability. To accurately calculate the conduction loss, a drain–source voltage clamp circuit is required to measure the on-state voltage. In this paper, the conventional drain–source voltage clamp circuit based on a transistor is comprehensively investigated by theoretical analysis, simulations, and experiments. It is demonstrated that the anti-parallel diodes and the gate-shunt capacitance of the conventional drain–source voltage clamp circuit have adverse impacts on the accuracy and security of the conduction loss measurement. Based on the above analysis, an improved drain–source voltage clamp circuit, derived from the conventional drain–source voltage clamp circuit, is proposed to solve the above problems. The operational advantages, physical structure, and design guidelines of the improved circuit are fully presented. In addition, to evaluate the influence of component parameters on circuit performance, this article comprehensively extracts three electrical quantities as judgment indicators. Based on the working mechanism of the improved circuit and the indicators mentioned above, general mathematical analysis and derivation are carried out to give guidelines for component selection. Finally, extensive experiments and detailed analyses are presented to validate the effectiveness of the proposed drain–source voltage clamp circuit. Compared with the conventional drain–source voltage clamp circuit, the improved drain–source voltage clamp circuit has higher measurement accuracy and working security when measuring conduction loss, and the proposed component selection method is verified to be reasonable and effective for better utilizing the clamp circuit.
Journal Article