Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
10,589 result(s) for "power system stability"
Sort by:
Power Quality in Power Systems and Electrical Machines
Power quality of power systems affects all connected electrical and electronic equipment. Power quality is a measure of deviations in voltage and frequency of the particular supply system. In recent years, there has been a considerable increase in nonlinear loads; in particular distributed loads, such as computers, TV monitors and lighting. These draw harmonic currents which, when distorted, have detrimental effects including interference, loss of reliability, increased operating costs, equipment overheating, motor failures, capacitor failure and inaccurate power metering. This subject is pertinent to engineers involved with electric power systems, electronic equipment, computers and manufacturing equipment. This book shows readers to understand the causes and effects of power quality problems such as non-sinusoidal wave shapes, voltage outages, losses due to poor power quality, and origins of single-time events such as voltage dips, voltage reductions and outages, along with techniques to mitigate these problems.
Automatic identification of transmission sections based on complex network theory
Taking transmission sections as the monitoring objects of power system security and stability level can largely improve the efficiency of analysis and control in power system operation. However, existing approaches for identifying transmission sections mainly depend on years of experience, which is not suitable for complicated and variable power systems with large scales. Thus, a novel method for automatic identification of transmission sections using complex network theory is proposed. The proposed method presents the fundamental conditions of transmission sections and identifies them from three levels: transmission lines, key transmission links and partition sections. First, based on the small-world characteristics of power grid, the index of transmission betweenness is presented to identify key transmission links from transmission lines. Then clustering algorithm of complex network is used to divide the power grid and to obtain partition sections from the key transmission links. Finally, the combinations of partition sections are selected and ranked as the transmission sections. Numerical results with CEPRI-36 system and a provincial system are provided to demonstrate the effectiveness and adaptability of the proposed method.
Stabilising control strategy for cyber‐physical power systems
The cyber‐physical nature of electric power systems has increased immensely over the past decades, with advanced communication infrastructure paving the way. It is now possible to design wide‐area controllers, relying on remote monitor and control of devices that can tackle power system stability problems more effectively than local controllers. However, their performance and security relies extensively on the communication infrastructure and can make power systems vulnerable to disturbances emerging on the cyber side of the system. In this study, the authors investigate the effect of communication delays on the performance of wide‐area damping controllers designed to stabilise oscillatory modes in a cyber‐physical power system (CPPS). They propose a rule‐based control strategy that combines wide‐area and traditional local stabilising controllers to increase the performance and maintain the stable operation of CPPS. The proposed strategy is validated on a reduced CPPS equivalent model of Great Britain.
Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems
A generic inertia emulation controller (INEC) scheme for multi-terminal voltage-source-converter (VSC)-based high voltage direct current (HVDC) systems is proposed in this study. The INEC can be incorporated in any grid-side VSC station, allowing the multi-terminal HVDC (MTDC) terminal to contribute an inertial response to connected AC systems during system disturbances, in a fashion similar to synchronous generators. The DC-link capacitors within the MTDC are utilised by the INEC scheme to exchange stored energy with the AC system by varying the overall DC voltage level of the MTDC network within a safe and pre-defined range. A theoretical treatment of the INEC algorithm and its implementation and integration within a conventional VSC control system are presented, and the impact on the total DC capacitance required within the MTDC network to ensure that DC voltages vary within an acceptable range is discussed. The proposed INEC scheme is validated using a MATLAB/SIMULINK model under various changes in demand and AC network faults. The model incorporates a multi-machine AC power system connected to a MTDC transmission system with multiple converter-interfaced nodes. The effectiveness of the INEC in damping post-fault oscillations and in enhancing AC grid frequency stability is also investigated.