Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
673
result(s) for
"poxvirus"
Sort by:
Proof-of-concept trial of oncolytic poxvirus
JX-594 is a granulocyte-macrophage colony-stimulating factor-expressing oncolytic pox-virus designed to selectively replicate in and destroy cancer cells through viral oncolysis and tumor-specific immunity. Hwang et al. report the findings of a low-dose, mechanistic proof-of-concept clinical trial of JX-594 in 10 people with previously treated stage IV melanoma. The authors present evidence for JX-594 replication, oncolysis, and transgene expression. Replication was still evident after multiple cycles. The findings have implications for further clinical development of JX-594 and other transgene-armed oncolytic viruses.
Journal Article
A cocktail vaccine with monkeypox virus antigens confers protection without selecting mutations in potential immune evasion genes in the vaccinia WR strain challenge
by
Qiu, Jinxin
,
Chen, Guohua
,
Zhang, Zihui
in
Monkeypox Virus
,
Poxvirus Immune Evasion
,
Poxvirus Vaccines
2025
Faced with the global monkeypox outbreak, current vaccine development predominantly focuses on the mRNA platform despite its limitations in stability and long-term efficacy. Here, we engineered a recombinant vesicular stomatitis virus (rVSV)-vectored cocktail vaccine encoding four conserved monkeypox virus (MPXV) antigens (A35R, A29L, M1R, and B6R; >94% clade homology), leveraging the thermostable properties of the VSV platform validated for 4°C storage in Ebola vaccines. In BALB/c mice, this multi-antigen vaccine elicited a rapid humoral response with specific IgG detectable by day 7, effectively neutralized the virus, and induced a robust Th1/Th2 balanced cytokine response. Immunization conferred 100% survival against lethal vaccinia virus WR strain challenge, with undetectable viral loads in the lungs and serum, and sustained efficacy against secondary infection at 60 days. Histopathology confirmed minimal lung damage in vaccinated mice. Crucially, upon the successive challenges, mutations in key poxvirus immune evasion genes (E3L and B7R) emerged in the single-component vaccine groups but were absent in the cocktail vaccine group. This finding provides direct evidence that the cocktail strategy suppresses viral escape, underscoring a fundamental advantage over single-antigen approaches. Our findings demonstrate the rVSV-based cocktail vaccines as a potent, scalable, and thermostable candidate for global MPXV control, particularly in regions with limited settings.
The global emergence of the monkeypox virus (MPXV) underscores the urgent need for effective and accessible vaccines. We developed a recombinant vesicular stomatitis virus (rVSV)-vectored cocktail vaccine expressing four conserved MPXV antigens. This multivalent vaccine elicits rapid and potent immune responses in mice, conferring complete protection against lethal vaccinia virus challenge. A critical finding is that while successive viral challenges selected for mutations in key immune evasion proteins in single-antigen vaccine groups, these mutations were absent in the cocktail-vaccinated group. This suggests that the cocktail strategy may suppress viral genetic drift, potentially limiting escape pathways. Combined with the thermostability of the VSV platform, our vaccine presents a promising and scalable candidate for combating monkeypox.
Journal Article
Ancient Gene Capture and Recent Gene Loss Shape the Evolution of Orthopoxvirus-Host Interaction Genes
by
Wolf, Yuri I.
,
Koonin, Eugene V.
,
Senkevich, Tatiana G.
in
Animals
,
Chemokines
,
Evolution, Molecular
2021
Orthopoxviruses (ORPV) include smallpox (variola) virus, one of the most devastating human pathogens, and vaccinia virus, comprising the vaccine used for smallpox eradication. Among roughly 200 ORPV genes, about half are essential for genome replication and expression as well as virion morphogenesis, whereas the remaining half consists of accessory genes counteracting the host immune response. The survival of viruses depends on their ability to resist host defenses and, of all animal virus families, the poxviruses have the most antidefense genes. Orthopoxviruses (ORPV), a genus within the subfamily Chordopoxvirinae , infect diverse mammals and include one of the most devastating human pathogens, the now eradicated smallpox virus. ORPV encode ∼200 genes, of which roughly half are directly involved in virus genome replication and expression as well as virion morphogenesis. The remaining ∼100 “accessory” genes are responsible for virus-host interactions, particularly counter-defense of innate immunity. Complete sequences are currently available for several hundred ORPV genomes isolated from a variety of mammalian hosts, providing a rich resource for comparative genomics and reconstruction of ORPV evolution. To identify the provenance and evolutionary trends of the ORPV accessory genes, we constructed clusters including the orthologs of these genes from all chordopoxviruses. Most of the accessory genes were captured in three major waves early in chordopoxvirus evolution, prior to the divergence of ORPV and the sister genus Centapoxvirus from their common ancestor. The capture of these genes from the host was followed by extensive gene duplication, yielding several paralogous gene families. In addition, nine genes were gained during the evolution of ORPV themselves. In contrast, nearly every accessory gene was lost, some on multiple, independent occasions in numerous lineages of ORPV, so that no ORPV retains them all. A variety of functional interactions could be inferred from examination of pairs of ORPV accessory genes that were either often or rarely lost concurrently. IMPORTANCE Orthopoxviruses (ORPV) include smallpox (variola) virus, one of the most devastating human pathogens, and vaccinia virus, comprising the vaccine used for smallpox eradication. Among roughly 200 ORPV genes, about half are essential for genome replication and expression as well as virion morphogenesis, whereas the remaining half consists of accessory genes counteracting the host immune response. We reannotated the accessory genes of ORPV, predicting the functions of uncharacterized genes, and reconstructed the history of their gain and loss during the evolution of ORPV. Most of the accessory genes were acquired in three major waves antedating the origin of ORPV from chordopoxviruses. The evolution of ORPV themselves was dominated by gene loss, with numerous genes lost at the base of each major group of ORPV. Examination of pairs of ORPV accessory genes that were either often or rarely lost concurrently during ORPV evolution allows prediction of different types of functional interactions.
Journal Article
Gleevec casts a pox on poxviruses
by
McFadden, G
in
Poxvirus
2005
The tyrosine kinase inhibitor Gleevec, currently used to treat cancers such as chronic myeloid leukemia, can also function as an antiviral drug to treat poxvirus infections.
Journal Article
Detection of Novel Poxvirus from Gray Seal ( Halichoerus grypus ), Germany
by
Pfaff, Florian
,
König, Patricia
,
Kramer, Katharina
in
Animals
,
Aquatic mammals
,
Bacterial infections
2023
We detected a novel poxvirus from a gray seal (Halichoerus grypus) from the North Sea, Germany. The juvenile animal showed pox-like lesions and deteriorating overall health condition and was finally euthanized. Histology, electron microscopy, sequencing, and PCR confirmed a previously undescribed poxvirus of the Chordopoxvirinae subfamily, tentatively named Wadden Sea poxvirus.
Journal Article
Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia
2016
Outbreaks of Middle East respiratory syndrome (MERS) raise questions about the prevalence and evolution of the MERS coronavirus (CoV) in its animal reservoir. Our surveillance in Saudi Arabia in 2014 and 2015 showed that viruses of the MERS-CoV species and a human CoV 229E–related lineage co-circulated at high prevalence, with frequent co-infections in the upper respiratory tract of dromedary camels. Including a betacoronavirus 1 species, we found that dromedary camels share three CoV species with humans. Several MERS-CoV lineages were present in camels, including a recombinant lineage that has been dominant since December 2014 and that subsequently led to the human outbreaks in 2015. Camels therefore serve as an important reservoir for the maintenance and diversification of the MERS-CoVs and are the source of human infections with this virus.
Journal Article
Genomic Analysis of Novel Poxvirus Brazilian Porcupinepox Virus, Brazil, 2019
by
Schlemper, André E.
,
Martins, Nathana B.
,
Pinto, Nataly N.R.
in
Brazil
,
Dispatch
,
DNA viruses
2021
We obtained the complete sequence of a novel poxvirus, tentatively named Brazilian porcupinepox virus, from a wild porcupine (Coendou prehensilis) in Brazil that had skin and internal lesions characteristic of poxvirus infection. The impact of this lethal poxvirus on the survival of this species and its potential zoonotic importance remain to be investigated.
Journal Article
Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA-SARS-2-S in preclinical vaccination
by
Duell, Elke
,
Okba, Nisreen M. A.
,
Sauerhering, Lucie
in
ACE2
,
Angiotensin-converting enzyme 2
,
Antibodies
2021
Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here,we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8⁺ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.
Journal Article
Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing
by
Yang, Zhilong
,
Porcella, Stephen F.
,
Bruno, Daniel P.
in
Apoptosis
,
Biological Sciences
,
Boundaries
2010
Deep RNA sequencing was used to simultaneously analyze vaccinia virus (VACV) and HeLa cell transcriptomes at progressive times following infection. VACV, the prototypic member of the poxvirus family, replicates in the cytoplasm and contains a double-stranded DNA genome with ≈200 closely spaced open reading frames (ORFs). The acquisition of a total of nearly 500 million short cDNA sequences allowed construction of temporal strand-specific maps of the entire VACV transcriptome at single-base resolution and analysis of over 14,000 host mRNAs. Before viral DNA replication, transcripts from 118 VACV ORFs were detected; after replication, transcripts from 93 additional ORFs were characterized. The high resolution permitted determination of the precise boundaries of many mRNAs including read-through transcripts and location of mRNA start sites and adjacent promoters. Temporal analysis revealed two clusters of early mRNAs that were synthesized in the presence of inhibitors of protein as well as DNA synthesis, indicating that they do not correspond to separate immediate- and delayed-early classes as defined for other DNA viruses. The proportion of viral RNAs reached 25—55% of the total at 4 h. This rapid change, resulting in a relative decrease of the vast majority of host mRNAs, can contribute to the profound shutdown of host protein synthesis and blunting of antiviral responses. At 2 h, however, a minority of cellular mRNAs was increased. The overrepresented functional categories of the up-regulated RNAs were NF-κB cascade, apoptosis, signal transduction, and ligand-mediated signaling, which likely represent the host response to invasion.
Journal Article
An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels
by
Raj, V. Stalin
,
Kuiken, Thijs
,
Osterhaus, Albert D. M. E.
in
Animals
,
Antibodies, Neutralizing - blood
,
Antibodies, Neutralizing - immunology
2016
Middle East respiratory syndrome coronavirus (MERS-CoV) infections have led to an ongoing outbreak in humans, which was fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. In addition to the implementation of hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here we show that a modified vaccinia virus Ankara (MVA) vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Compared with results for control animals, we observed a significant reduction of excreted infectious virus and viral RNA transcripts in vaccinated animals upon MERS-CoV challenge. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus would also provide protection against camelpox.
Journal Article