Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"practical Li–S batteries"
Sort by:
High‐Efficacy and Polymeric Solid‐Electrolyte Interphase for Closely Packed Li Electrodeposition
2021
The industrial application of lithium metal anode requires less side reaction between active lithium and electrolyte, which demands the sustainability of the electrolyte‐induced solid‐electrolyte interface. Here, through a new diluted lithium difluoro(oxalato)borate‐based (LiDFOB) high concentration electrolyte system, it is found that the oxidation behavior of aggregated LiDFOB salt has a great impact on solid‐electrolyte interphase (SEI) formation and Li reversibility. Under the operation window of Cu/LiNi0.8Co0.1Mn0.1O2 full cells (rather than Li/Cu configuration), a polyether/coordinated borate containing solid‐electrolyte interphase with inner Li2O crystalline can be observed with the increasing concentration of salt, which can be ascribed to the reaction between aggregated electron‐deficient borate species and electron‐rich alkoxide SEI components. The high Li reversibility (99.34%) and near‐theoretical lithium deposition enable the stable cycling of LiNi0.8Co0.1Mn0.1O2/Li cells (N/P < 2, 350 Wh kg−1) under high cutoff voltage condition of 4.6 V and lean electrolyte condition (E/C ≈ 3.2 g Ah−1).
High‐efficacy and polymeric solid‐electrolyte interphase is in situ formed on lithium metal anode by using a new diluted lithium difluoro(oxalato)borate‐based (LiDFOB) high‐concentration electrolyte. The outer SEI layer is an amorphous polyether/tri‐coordinated borate polymeric organic phase, while the inner layer contains robust Li2O inorganic crystalline. As‐fabricated cells deliver a high Li reversibility of 99.34% and long full‐cell lifetime under ≈350 Wh kg−1.
Journal Article
Breaking Barriers to High‐Practical Li‐S Batteries with Isotropic Binary Sulfiphilic Electrocatalyst: Creating a Virtuous Cycle for Favorable Polysulfides Redox Environments
2023
Investigations into lithium–sulfur batteries (LSBs) has focused primarily on the initial conversion of lithium polysulfides (LiPSs) to Li2S2. However, the subsequent solid–solid reaction from Li2S2 to Li2S and the Li2S decomposition process should be equally prioritized. Creating a virtuous cycle by balancing all three chemical reaction processes is crucial for realizing practical LSBs. Herein, amorphous Ni3B in synergy with carbon nanotubes (aNi3B@CNTs) is proposed to implement the consecutive catalysis of S8(solid) → LiPSs(liquid) → Li2S(solid) →LiPSs(liquid). Systematic theoretical simulations and experimental analyses reveal that aNi3B@CNTs with an isotropic structure and abundant active sites can ensure rapid LiPSs adsorption‐catalysis as well as uniform Li2S precipitation. The uniform Li2S deposition in synergy with catalysis of aNi3B enables instant/complete oxidation of Li2S to LiPSs. The produced LiPSs are again rapidly and uniformly adsorbed for the next sulfur evolution process, thus creating a virtuous cycle for sulfur species conversion. Accordingly, the aNi3B@CNTs‐based cell presents remarkable rate capability, long‐term cycle life, and superior cyclic stability, even under high sulfur loading and extreme temperature environments. This study proposes the significance of creating a virtuous cycle for sulfur species conversion to realize practical LSBs.
Virtuous cycle for consecutive electrocatalysis. Specifically, the binary sulfiphilic aNi3B with isotropic structure enables a rapid/uniform LiPSs adsorption. Meanwhile, the superior catalytic capability and ionic/electronic conductivity synergistically facilitated the fast/homogeneous Li2S precipitation. Uniform Li2S deposition helps fully oxidize it to LiPSs, which are quickly and uniformly adsorbed for the next sulfur evolution, creating a virtuous cycle for sulfur species conversion.
Journal Article
PDOL-Based Solid Electrolyte Toward Practical Application: Opportunities and Challenges
2024
HighlightsThe poly(1,3-dioxolane) (PDOL) electrolyte demonstrates promising potential for practical application due to its advantages in in-situ polymerization process, high ionic conductivity, and long cycle life.This review focuses on the polymerization mechanism, composite innovation, and application of PDOL electrolytes.This review provides a comprehensive summary of the challenges associated with the PDOL electrolyte and makes forward-looking recommendations.Polymer solid-state lithium batteries (SSLB) are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety. Ion conductivity, interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB. As the main component of SSLB, poly(1,3-dioxolane) (PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid electrolyte, for their high ion conductivity at room temperature, good battery electrochemical performances, and simple assembly process. This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB. The focuses include exploring the polymerization mechanism of DOL, the performance of PDOL composite electrolytes, and the application of PDOL. Furthermore, we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB. The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
Journal Article
Electrochemical Energy Storage: Current and Emerging Technologies
2017
This chapter includes theory based and practical discussions of electrochemical energy storage systems including batteries (primary, secondary and flow) and supercapacitors. Primary batteries are exemplified by zinc-air, lithium-air and lithium thionyl chloride batteries. Secondary batteries are exemplified by recombination, lithium ion and high temperature batteries. The state-of-the-art in supercapacitors and pseudo capacitors are discussed. The chapter concludes with battery and capacitor emerging technologies. This chapter is suitable as a reference for professionals and for classroom education.
Book Chapter