Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
577 result(s) for "practical security"
Sort by:
A Review of Security Evaluation of Practical Quantum Key Distribution System
Although the unconditional security of quantum key distribution (QKD) has been widely studied, the imperfections of the practical devices leave potential loopholes for Eve to spy the final key. Thus, how to evaluate the security of QKD with realistic devices is always an interesting and opening question. In this paper, we briefly review the development of quantum hacking and security evaluation technology for a practical decoy state BB84 QKD system. The security requirement and parameters in each module (source, encoder, decoder and detector) are discussed, and the relationship between quantum hacking and security parameter are also shown.
Security of quantum key distribution with source and detection imperfections
In practice, the device imperfections might introduce deviations from the idealized models used in the security proofs of quantum key distribution (QKD). This requires the refined security analysis for practical QKD. However, in most of previous analysis, the imperfections are individually considered with different models. Here, we derive a security analysis which takes both the source and detection imperfections into account. Particularly, the efficiency mismatch in the detection and a number of flaws in the source (such as, inaccuracy of encoded quantum state, side-channel of source, distinguishable decoy states, Trojan-horse, and so on) are analyzed in a general security model. Then the performance of the QKD system with the devices imperfections is evaluated. Our results present an important step toward the practical security of QKD wit realistic devices.
Generic security analysis framework for quantum secure direct communication
Quantum secure direct communication provides a direct means of conveying secret information via quantum states among legitimate users. The past two decades have witnessed its great strides both theoretically and experimentally. However, the security analysis of it still stays in its infant. Some practical problems in this field to be solved urgently, such as detector efficiency mismatch, side-channel effect and source imperfection, are propelling the birth of a more impeccable solution. In this paper, we establish a new framework of the security analysis driven by numerics where all the practical problems may be taken into account naturally. We apply this framework to several variations of the DL04 protocol considering real-world experimental conditions. Also, we propose two optimizing methods to process the numerical part of the framework so as to meet different requirements in practice. With these properties considered, we predict the robust framework would open up a broad avenue of the development in the field.
Improved Practical Vulnerability Analysis of Mouse Data According to Offensive Security based on Machine Learning in Image-Based User Authentication
The objective of this study was to verify the feasibility of mouse data exposure by deriving features to improve the accuracy of a mouse data attack technique using machine learning models. To improve the accuracy, the feature appearing between the mouse coordinates input from the user was analyzed, which is defined as a feature for machine learning models to derive a method of improving the accuracy. As a result, we found a feature where the distance between the coordinates is concentrated in a specific range. We verified that the mouse data is apt to being stolen more accurately when the distance is used as a feature. An accuracy of over 99% was achieved, which means that the proposed method almost completely classifies the mouse data input from the user and the mouse data generated by the defender.
Quantum Hacking on an Integrated Continuous-Variable Quantum Key Distribution System via Power Analysis
In quantum key distribution (QKD), there are some security loopholes opened by the gaps between the theoretical model and the practical system, and they may be exploited by eavesdroppers (Eve) to obtain secret key information without being detected. This is an effective quantum hacking strategy that seriously threatens the security of practical QKD systems. In this paper, we propose a new quantum hacking attack on an integrated silicon photonic continuous-variable quantum key distribution (CVQKD) system, which is known as a power analysis attack. This attack can be implemented by analyzing the power originating from the integrated electrical control circuit in state preparation with the help of machine learning, where the state preparation is assumed to be perfect in initial security proofs. Specifically, we describe a possible power model and show a complete attack based on a support vector regression (SVR) algorithm. The simulation results show that the secret key information decreases with the increase of the accuracy of the attack, especially in a situation with less excess noise. In particular, Eve does not have to intrude into the transmitter chip (Alice), and may perform a similar attack in practical chip-based discrete-variable quantum key distribution (DVQKD) systems. To resist this attack, the electrical control circuit should be improved to randomize the corresponding power. In addition, the power can be reduced by utilizing the dynamic voltage and frequency scaling (DVFS) technology.
Sending or Not-Sending Twin-Field Quantum Key Distribution with Flawed and Leaky Sources
Twin-field quantum key distribution (TF-QKD) has attracted considerable attention and developed rapidly due to its ability to surpass the fundamental rate-distance limit of QKD. However, the device imperfections may compromise its practical implementations. The goal of this paper is to make it robust against the state preparation flaws (SPFs) and side channels at the light source. We adopt the sending or not-sending (SNS) TF-QKD protocol to accommodate the SPFs and multiple optical modes in the emitted states. We analyze that the flaws of the phase modulation can be overcome by regarding the deviation of the phase as phase noise and eliminating it with the post-selection of phase. To overcome the side channels, we extend the generalized loss-tolerant (GLT) method to the four-intensity decoy-state SNS protocol. Remarkably, by decomposing of the two-mode single-photon states, the phase error rate can be estimated with only four parameters. The practical security of the SNS protocol with flawed and leaky source can be guaranteed. Our results might constitute a crucial step towards guaranteeing the practical implementation of the SNS protocol.
Practical Security of High-Dimensional Quantum Key Distribution with Intensity Modulator Extinction
Quantum key distribution (QKD) has attracted much attention due to its unconditional security. High-dimensional quantum key distribution (HD-QKD) is a brand-new type of QKD protocol that has many excellent advantages. Nonetheless, practical imperfections in realistic devices that are not considered in the theoretical security proof may have an impact on the practical security of realistic HD-QKD systems. In this paper, we research the influence of a realistic intensity modulator on the practical security of HD-QKD systems with the decoy-state method and finite-key effects. We demonstrate that there is a certain impact in the secret key rate and the transmission distance when taking practical factors into security analysis.
Practical Security of Continuous Variable Quantum Key Distribution Ascribable to Imperfect Modulator for Fiber Channel
An amplitude modulator plays an essential role in the implementation of continuous-variable quantum key distribution (CVQKD), whereas it may bring about a potential security loophole in the practical system. The high-frequency modulation of the actual transmitter usually results in the high rate of the system. However, an imperfect amplitude modulator (AM) can give birth to a potential information leakage from the modulation of the transmitter. To reveal a potential security loophole from the high-frequency AM embedded in the transmitter, we demonstrate an influence on the practical security of the system in terms of the secret key rate and maximal transmission distance. The results indicate the risk of this security loophole in the imperfect AM-embedded transmitter. Fortunately, the legal participants can trace back the potential information leakage that has been produced from the imperfect transmitter at high frequencies, which can be used for defeating the leakage attack in CVQKD. We find the limitations of the imperfect AM-embedded transmitter of the high-frequency quantum system, and hence, we have to trade off the practical security and the modulation frequency of the AM-embedded transmitter while considering its implementation in a practical environment.
Practical Analysis of Sending or Not-Sending Twin-Field Quantum Key Distribution with Frequency Side Channels
The twin-field quantum key distribution (TF-QKD) and its variants can overcome the fundamental rate-distance limit of QKD. However, their physical implementations with the side channels remain the subject of further research. We test the side channel of a type of external intensity modulation that applies a Mach–Zehnder-type electro-optical intensity modulator, which shows the distinguishability of the signal and decoy states in the frequency domain. Based on this security loophole, we propose a side-channel attack, named the passive frequency-shift attack, on the imperfect implementation of the sending or not-sending (SNS) TF-QKD protocol. We analyze the performance of the SNS protocol with the actively odd-parity pairing (AOPP) method under the side-channel attack by giving the formula of the upper bound of the real secret key rate and comparing it with the lower bound of the secret key rate under Alice and Bob’s estimation. The simulation results quantitatively show the effectiveness of the attack on the imperfect devices at a long distance. Our results emphasize the importance of practical security at the light source and might provide a valuable reference for device selection in the practical implementation of the SNS protocol.