Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32,020
result(s) for
"printed materials"
Sort by:
General Reference and Design S–N Curves Obtained for 1.2709 Tool Steel
by
Houdková, Šárka
,
Prażmowski, Mariusz
,
Zetkova, Ivana
in
3-D printers
,
Abrasion resistant steels
,
Additive manufacturing
2023
At present, due to advanced fatigue calculation models, it is becoming more crucial to find a reliable source for design S–N curves, especially in the case of new 3D-printed materials. Such obtained steel components are becoming very popular and are often used for important parts of dynamically loaded structures. One of the commonly used printing steels is EN 1.2709 tool steel, which has good strength properties and high abrasion resistance, and can be hardened. The research shows, however, that its fatigue strength may differ depending on the printing method, and may be characterized by a wide scatter of the fatigue life. This paper presents selected S–N curves for EN 1.2709 steel after printing with the selective laser melting method. The characteristics are compared, and conclusions are presented regarding the resistance of this material to fatigue loading, especially in the tension–compression state. A combined general mean reference and design fatigue curve is presented, which incorporates our own experimental results as well as those from the literature for the tension–compression loading state. The design curve may be implemented in the finite element method by engineers and scientists in order to calculate the fatigue life.
Journal Article
Greener Approaches to Combat Biofilm’s Antimicrobial Resistance on 3D-Printed Materials: A Systematic Review
by
El Aabedy, Amal
,
Elabed, Soumya
,
Sebbar, Khaoula
in
3-D printers
,
3D printing
,
Additive manufacturing
2024
In recent years, Additive Manufacturing (AM), commonly referred to as 3D printing, has garnered the attention of the scientific community due to its capacity to transform ordinary and traditional items into customized materials at an affordable cost through various AM processes. Antimicrobial/antibiofilm 3D printed materials are one of the most trending research topics, owing to the growing concerns over the emergence of complex microbial structures called “biofilms” on various surfaces. The review provides an overview of the evolution of additive manufacturing (AM) technologies and their various derivatives, along with a brief description of their materials and applications. It also introduces how biofilms can represent an advantageous lifestyle for microbial populations. The primary objective of this research was to conduct a systematic review of the development of planctonic or biofilm forms of microorganisms on 3D-printed materials. The article summarizes commonly studied microorganisms on these materials and presents their 3D printing process, materials, as well as the fields covered by each of the analyzed papers. To the best of our knowledge, this is the first all-inclusive systematic review that amalgamates research conducted in diverse fields to assess the development of biofilms on surfaces produced through three-dimensional printing. Most notably, this review presents a comprehensive account of sustainable approaches for producing antimicrobial materials through 3D printing. Additionally, we assess their advancements in various fields such as medicine, environment, agri-food, and other relevant sectors. The findings of our literature review can be used to recommend appropriate microorganisms, 3D printing materials, and technologies for academic and industrial research purposes, focusing on the development of microbial biofilms on 3D-printed surfaces. Furthermore, it highlights the potential of environmentally friendly modified AM technologies to combat biofilms in clinical and non-clinical areas. Our goal with this review is to help readers gain a better understanding of fundamental concepts, inspire new researchers, and provide valuable insights for future empirical studies focused on eradicating biofilms from 3D-printed materials.
Journal Article
Material Characterization and Strategies for Optimization of Additively Manufactured Electric Machines—A Review
by
Hussain Shah, Mazahir
,
Chomát, Miroslav
,
Ul Hassan, Shaheer
in
3-D printers
,
Additive manufacturing
,
Cooling systems
2025
With the advent of 3D printing, advancements in optimizing structures and innovations to 3D print new materials for electric machines are being developed. Conventional structures are being replaced by lattice structures which provide better properties. From plastics to metals, recent achievements have been made in the 3D printing of soft and hard magnetic materials. Hard magnetic materials are mostly printed by mixing them with ferrites or using a binder material. This paper focuses on all the different methods and compositions to 3D print metals and soft and hard magnetic materials. Although research is still undergoing to expand the use of different magnetic materials, we still have some limitations in their use in electric machines e.g., mixing hard magnetic materials with other materials for 3D printing weakens their electromagnetic properties. Some 3D printing processes provide a comparatively low mechanical strength. With research being undertaken to overcome these challenges, recent 3D-printed magnetic materials for the use in electric machines are discussed in this paper. Apart from materials, different optimization strategies are also introduced that increase the efficiency of the 3D-printed parts e.g., process optimization, topology optimization, and thermal optimization. Process optimization includes different multi-material strategies to reduce the time taken, print multiple parts in one process, and improve the properties of the part. Topology optimization revolves around optimized designs. The properties of electric machines are enhanced by using optimized shapes of rotor, stator, and coils. During the operation of electric machines, there is always some heat generation. The efficient removal of this heat from the system can increase the efficiency of the part. Thermal optimization to efficiently dissipate the heat to the atmosphere is achieved by using phase-changing materials (PCMs), by installing cooling systems, or by introducing optimized structures with better thermal properties. All these developments are discussed in this paper.
Journal Article
Expanding Puck and Schürmann Inter Fiber Fracture Criterion for Fiber Reinforced Thermoplastic 3D-Printed Composite Materials
by
Ferreira, Rafael Thiago Luiz
,
Larsson, Ragnar
,
Resende, Hugo Borelli
in
3D-printed composite materials
,
additive manufacturing
,
Brittleness
2020
The present work expands the application of Puck and Schürmann Inter-Fiber Fracture criterion to fiber reinforced thermoplastic 3D-printed composite materials. The effect of the ratio between the transverse compressive strength and the in-plane shear strength is discussed and a new transition point between the fracture conditions under compressive loading is proposed. The recommended values of the inclination parameters, as well as their effects on the proposed method, are also discussed. Failure envelopes are presented for different 3D-printed materials and also for traditional composite materials. The failure envelopes obtained here are compared to those provided by the original Puck and Schürmann criterion and to those provided by Gu and Chen. The differences between them are analyzed with the support of geometrical techniques and also statistical tools. It is demonstrated that the Expanded Puck and Schürmann is capable of providing more suitable failure envelopes for fiber reinforced thermoplastic 3D-printed composite materials in addition to traditional semi-brittle, brittle and intrinsically brittle composite materials.
Journal Article
Structural Design of a Large-Scale 3D-Printed High-Altitude Propeller: Methodology and Experimental Validation
by
Malim, Ahmed
,
De Troyer, Tim
,
Mourousias, Nikolaos
in
3-D printers
,
3D printing
,
3D printing technique
2023
This paper presents an original approach to the structural design and analysis of a 3D-printed thermoplastic-core propeller blade for high-altitude UAVs. A macroscale linear isotropic numerical model for the behavior of 3D-printed parts (in Tough PLA, as well as ABS) is fed with values from tensile and bending testing on standard specimens (ISO 527-2/1A and ASTM D5023) before validation by experiments on a representative scaled substitute blade and blade root. The influence of printing parameters, such as material, layer thickness, and raster orientation, is also addressed, as well as variability between prints. To conclude on the validity of the present methodology for complex shapes, a validation of the numerical results with experiments was performed on a scaled 3D-printed twisted blade. The presented macroscale approach to 3D-printed materials was able to predict tensile and bending deformation with good accuracy compared to previously published micro- or meso-scale approaches since it is built from systematic tensile and bending testing on standard specimens to representative blade assemblies. It provides a reliable digital twin for the early design stages of 3D-printed propeller blades. As a proof-of-concept, the validated methodology was then used to design and numerically analyze a large-scale blade using steady one-way Fluid-Structure Interaction in take-off and cruise conditions. The computed stress levels in the blade structure were within safe margins, thereby proving the feasibility of the 3D printing of full-scale propeller blades for high-altitude platforms.
Journal Article
A review of 3D printing processes and materials for soft robotics
2020
Purpose
Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.
Design/methodology/approach
The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.
Findings
This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.
Originality/value
The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.
Journal Article
Extraction of mechanical properties of materials through deep learning from instrumented indentation
by
Ramamurty, Upadrasta
,
Kumar, Punit
,
Karniadakis, George Em
in
3D Printed Materials
,
Accuracy
,
Algorithms
2020
Instrumented indentation has been developed and widely utilized as one of the most versatile and practical means of extracting mechanical properties of materials. This method is particularly desirable for those applications where it is difficult to experimentally determine the mechanical properties using stress–strain data obtained from coupon specimens. Such applications include material processing and manufacturing of small and large engineering components and structures involving the following: three-dimensional (3D) printing, thin-film and multilayered structures, and integrated manufacturing of materials for coupled mechanical and functional properties. Here, we utilize the latest developments in neural networks, including a multifidelity approach whereby deep-learning algorithms are trained to extract elastoplastic properties of metals and alloys from instrumented indentation results using multiple datasets for desired levels of improved accuracy. We have established algorithms for solving inverse problems by recourse to single, dual, and multiple indentation and demonstrate that these algorithms significantly outperform traditional brute force computations and function-fitting methods. Moreover, we present several multifidelity approaches specifically for solving the inverse indentation problem which 1) significantly reduce the number of high-fidelity datasets required to achieve a given level of accuracy, 2) utilize known physical and scaling laws to improve training efficiency and accuracy, and 3) integrate simulation and experimental data for training disparate datasets to learn and minimize systematic errors. The predictive capabilities and advantages of these multifidelity methods have been assessed by direct comparisons with experimental results for indentation for different commercial alloys, including two wrought aluminum alloys and several 3D printed titanium alloys.
Journal Article
A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts
by
Karakoç, Alp
,
Wiklund, Jenny
,
Palko, Toni
in
Additive manufacturing
,
Communication
,
Consumer behavior
2021
Innovations in industrial automation, information and communication technology (ICT), renewable energy as well as monitoring and sensing fields have been paving the way for smart devices, which can acquire and convey information to the Internet. Since there is an ever-increasing demand for large yet affordable production volumes for such devices, printed electronics has been attracting attention of both industry and academia. In order to understand the potential and future prospects of the printed electronics, the present paper summarizes the basic principles and conventional approaches while providing the recent progresses in the fabrication and material technologies, applications and environmental impacts.
Journal Article
A critical review of 3D printing and digital manufacturing in construction engineering
by
Issayev, Gani
,
Shehab, Essam
,
Sarfraz, Shoaib
in
3-D printers
,
Additive manufacturing
,
Architecture
2022
Purpose
In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process automation and the possibility of saving labor, waste materials, construction time and hazardous procedures for humans. Significant researches were conducted to identify the performance of the materials, while some researches focused on the development of novel techniques and methods, such as building information modeling. This paper aims to provide a detailed overview of the state-of-the-art of currently used 3D printing technologies in the construction areas and global acceptance in its applications.
Design/methodology/approach
The working principle of additive manufacturing in construction engineering (CE) is presented in terms of structural design, materials used and theoretical background of the leading technologies that are used to construct buildings and structures as well as their distinctive features.
Findings
The trends of 3D printing processes in CE are very promising, as well as the development of novel materials, will gain further momentum. The findings also indicate that the digital twin (DT) in construction technology would bring the industry a step forward toward achieving the goal of Industry 5.0.
Originality/value
This review highlights the prospects of digital manufacturing and the DT in construction engineering. It also indicates the future research direction of 3D printing in various constriction sectors.
Journal Article
Antioxidant PLA Composites Containing Lignin for 3D Printing Applications: A Potential Material for Healthcare Applications
by
Fong, Mun Leon
,
Donnelly, Ryan F.
,
Martin, Niamh K.
in
3-D printers
,
3D printing
,
Additive manufacturing
2019
Lignin (LIG) is a natural biopolymer with well-known antioxidant capabilities. Accordingly, in the present work, a method to combine LIG with poly(lactic acid) (PLA) for fused filament fabrication applications (FFF) is proposed. For this purpose, PLA pellets were successfully coated with LIG powder and a biocompatible oil (castor oil). The resulting pellets were placed into an extruder at 200 °C. The resulting PLA filaments contained LIG loadings ranging from 0% to 3% (w/w). The obtained filaments were successfully used for FFF applications. The LIG content affected the mechanical and surface properties of the overall material. The inclusion of LIG yielded materials with lower resistance to fracture and higher wettabilities. Moreover, the resulting 3D printed materials showed antioxidant capabilities. By using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, the materials were capable of reducing the concentration of this compound up to ca. 80% in 5 h. This radical scavenging activity could be potentially beneficial for healthcare applications, especially for wound care. Accordingly, PLA/LIG were used to design meshes with different designs for wound dressing purposes. A wound healing model compound, curcumin (CUR), was applied in the surface of the mesh and its diffusion was studied. It was observed that the dimensions of the meshes affected the permeation rate of CUR. Accordingly, the design of the mesh could be modified according to the patient’s needs.
Journal Article