Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,771 result(s) for "processing residues"
Sort by:
Optimizing Quality of Wood Pellets Made of Hardwood Processing Residues
Small-scale wood pellet producers often use a trial-and-error approach for determining adequate blending of available wood processing residues and pelletizing parameters. Developing general guidelines for optimizing wood pellet quality and meeting market standards would facilitate their market entry and profitability. Four types of hardwood residues, including green wood chips, dry shavings, and solid and engineered wood sawdust, were investigated to determine the optimum blends of feedstocks and pelletizing conditions to produce pellets with low friction force, high density and high mechanical strength. The feedstock properties reported in this study included particle size distribution, wood moisture content, bulk density, ash content, calorific values, hemicelluloses, lignin, cellulose, extractives, ash major and minor elements, and carbon, nitrogen, and sulfur. All residues tested could potentially be used for wood pellet production. However, high concentrations of metals, such as aluminum, could restrict their use for accessing markets for high-quality pellets. Feedstock moisture content and composition (controlled by the proportions of the various residue sources within blends) were the most important parameters that determined pellet quality, with pelletizing process parameters having less overall influence. Residue blends with a moisture content of 9%–13.5% (dry basis), composed of 25%–50% of sawdust generated by sawing of wood pieces and a portion of green chips generated by trimming of green wood, when combined with a compressive force of 2000 N or more during pelletizing, provided optimum results in terms of minimizing friction and increasing pellet density and mechanical strength. Developing formal relationships between the type of process that generates residues, the properties of residues hence generated, and the quality of wood pellets can contribute to optimize pellet production methods.
Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound
The red snow crab (Chionoecetes japonicus) is the most industrially processed in the Republic of Korea, and the meat is very popular, owing to its savory taste and flavor. Its body meat production comprises a two-step separation to increase meat yield. However, during the secondary separation, broken shell debris is occasionally entrained in the meat products, which is a concern for manufacturers. As the residues from first separation contain 39.9% protein, it can be utilized as an enzymatic protein hydrolysate (FPH) rich in free amino acids (FAAs). A combination of flavourzyme and alcalase (1:1) superiorly hydrolyzed the protein of the residues, and the best hydrolysis condition was suggested at 60 °C for 15 h with fourfold water and 2% enzyme addition, achieving a 57.4% degree of hydrolysis. The EPH was mostly composed of FAAs containing most essential amino acids; however, bitter-tasting amino acids accounted for 46.4% of the FAAs. To reduce the bitter taste, different nonvolatile organic acids were considered as masking agents, and citric and malic acids were effective, though the umami taste is slightly decreased. In conclusion, the crab processing residues can be utilized as an FAA-based natural seasoning compound through enzymatic hydrolysis and organic acid treatment.
Charred olive stones: experimental and archaeological evidence for recognizing olive processing residues used as fuel
After extracting oil from olives a residue is left usually referred to as the olive oil processing residue (OPR). This study explores the way in which ancient societies may have used OPR as fuel for fires to generate heat and the various issues that are related to the residues of this fuel. After drying, the high heating value and structure of OPR makes it an excellent and efficient fuel. Upgrading OPR further, through thermal conversion or charring, provides an even more efficient fuel (COPR), with a hotter and smoke free flame, a higher heating value and which is lighter in mass and thus easier to transport. After a fire is extinguished two types of remains of the fuel are left i.e. char and ash. Analyses on both remains, recovered from archaeological deposits, could be used as a source of information on fuel utilization. Laboratory experiments on charred modern OPR and stones show that by measuring their reflectance and analyzing their structure under reflected light microscopy, OPR and COPR can be distinguished in the charred material recovered from three archaeological sites in Greece and Syria. Based on these investigations it is suggested that on the three sites COPR was used as fuel. Ash, sampled together with the char, provides the possibility of investigating if other types of fuel were used, apart from OPR or COPR. On the investigated sites no ash was collected, but the analysis of the modern OPR showed that the properties of its ash could be used to distinguish it from other types of fuel. Ash from modern OPR and olive stones showed the presence of phytoliths. The often discussed issue related to the sharpness and smoothness of the edges of charred fragmented olive stones was investigated. The results showed that this is not a reliable criterion for recognizing olive oil production. It is recommended that in addition to the identification of the botanical material more properties of the remains of fuels should be analysed. To prevent destroying and losing char and ash as a result of excavation activities such as flotation and sieving, special measures have to be taken. The results show that analysing char and ash may provide valuable information on the (pyro)technology practised in ancient societies.
Study of Cr(VI) adsorption onto nitrogen-containing activated carbon preparation from bamboo processing residues
Nitrogen-containing bamboo charcoals were prepared using bamboo processing residues, and modified by melamine or urea. The iodine value of the products we obtained was analyzed, and two samples were chosen for the Cr(VI) adsorption. The experimental results show that under the KOH and carbon ratio of 3:1 (w₁/w₂), activation temperature 800 °C and activation time 1 h, the activated carbons modified by melamine boasted the iodine value of 1144 mg/g and the activated carbons modified by urea boasted the iodine value of 1263 mg/g. In addition, the equilibrium adsorption capacity is 95.3 mg/g for the activated carbons modified by melamine with the adsorbent dosage of 1.0 g/L at an initial pH 2 in the presence of 100 mg/L K₂Cr₂O₇ at 30 °C for 180 min and it is 94.2 mg/g for the activated carbons modified by urea in the same reaction condition. The pseudo-second-order kinetic model can better reflect the two kinds of nitrogen-containing activated carbons adsorption kinetic process of Cr(VI). The adsorption process conforms to the Langmuir model, indicating that the process is single molecular layer adsorption.
Characterization of chromium-containing wastes and soils affected by the production of chromium tanning agents
Purpose Wastes of unknown composition derived from the production of trivalent chromium (Cr(III)) salts used as tanning agents are deposited in the area of Kanpur, India. The questions of whether these samples are chromite ore processing residue (COPR) and whether Cr occurs in its toxic hexavalent form (Cr(VI)) arise. Materials and methods Twenty-one samples from two disposal sites and surrounding soils were analyzed, specifically examining their elemental and mineralogical composition. Additionally, aqueous eluates with different liquid-to-solid ratios were performed and analyzed for Cr(VI). Results and discussion The samples were classified in accordance to the sum of silicon and aluminum and the sum of calcium and Cr contents: uncontaminated, moderately contaminated, and highly contaminated material. Highly contaminated material exhibited extremely alkaline pH values up to 12.5 and total Cr contents ranging from 65.7 to 110 g/kg, whereas uncontaminated material had comparatively moderate pH values and Cr contents <1 g/kg. In total, seven crystalline phases commonly found in COPR were identified in the contaminated samples, of which five phases (brownmillerite, hydrocalumite, hydrogarnet, magnesiochromite, and periclase) are known to be able to accommodate Cr whereas hydrogarnet and hydrocalumite are the main host phases for Cr(VI). Batch tests showed that dissolution controlled the Cr(VI) concentrations in the eluates. Conclusions Six samples were clearly identified as highly Cr-contaminated COPR. Leaching of Cr(VI) and resulting contamination of soils and water bodies is a key environmental risk arising from these COPR sites especially during the monsoon season. This situation is of particular concern as the local population use the highly Cr(VI)-contaminated water not only for the needs of livestock and irrigation but also as drinking water due to the absence of alternative water resources.
Rapid spectral analysis of agro-products using an optimal strategy: dynamic backward interval PLS–competitive adaptive reweighted sampling
A novel strategy of variable selection approach named dynamic backward interval partial least squares–competitive adaptive reweighted sampling (DBiPLS-CARS) was proposed in this study. Near-infrared data sets of three different agro-products, namely corn, crop processing lamina, and plant leaf samples, were collected to investigate the performance of the proposed method. Weak relevant variables were first removed by DBiPLS and a refined selection of the remaining variables was then conducted by CARS. The Monte Carlo uninformative variable elimination (MCUVE) was used as a classical beforehand uninformative variable elimination method for comparison. Results showed that DBiPLS can select informative variables more continuously than MCUVE. Some synergistic variables which may be omitted by MCUVE can be retained by DBiPLS. By contrast, MCUVE can hardly avoid the disturbance of certain weak relevant variables as a result of its calculation based on the full spectrum regression. Therefore, DBiPLS exhibited the advantage of removing the weak relevant variables before CARS, and simultaneously improved the prediction performance of CARS.
Energy Crops and Their Implications on Soil and Environment
Interest in producing cellulosic ethanol from renewable energy sources is growing. Potential energy crops include row crops such as corn (Zea mays L.), perennial warm-season grasses (WSGs), and short-rotation woody crops (SRWCs). However, impacts of growing dedicated energy crops as biofuel on soil and environment have not been well documented. This article reviews the (i) impacts of growing WSGs and SRWCs on soil properties, soil organic carbon (SOC) sequestration, and water quality, and (ii) performance of energy crops in marginal lands. Literature shows that excessive (50%) crop residue removal adversely impacts soil and environmental quality as well as crop yields. Growing WSGs and SRWCs can be potential alternatives to crop residue removal as biofuel. Warm-season grasses and SRWCs can improve soil properties, reduce soil erosion, and sequester SOC. Crop residue removal reduces SOC concentration by 1 to 3 Mg ha–1 yr–1 in the top 10 cm, whereas growing WSGs and SRWCs increase SOC concentration while providing biofuel feedstocks. The WSGs can store SOC between 0 and 3 Mg C ha–1 yr–1 in the top 5 cm of soil, while the SRWCs can store between 0 and 1.6 Mg ha–1 yr–1 of SOC in the top 100 cm. The WSGs and SRWCs have more beneficial effects on soil and environment when grown in marginal lands than when grown in croplands or natural forests. Indeed, they can grow in nutrient-depleted, compacted, poorly drained, acid, and eroded soils. Development of sustainable systems of WSGs and SRWCs in marginal lands is a high priority.
Using shrimp shells and concrete to mitigate leaching for metals from waste rock
The capability of shrimp shells or construction demolition concrete as amendments to immobilize elements, primarily Pb and Zn, generated from mine waste weathering, was investigated via standard batch leaching test (L/S 10 cm 3 /g, 24 h). The effect of the amendment was tested at waste rock-to-residue ratios 9:1, 9.5:0.5, and 9.8:0.2 (weight:weight, w/w), with seawater as leachant. The effect of freshwater vs. seawater on the leaching pattern was investigated. The elemental contents of rock varied largely. Elemental levels in shells and concrete had much lower values than waste rock. Leaching results showed that amendment in both cases had high capacity to immobilize Pb and Zn. A decrease of concrete-to-rock ratio from 1:9 to 0.2:9.8 (w/w) led to more leaching of Pb but less of Zn. Similarly, decreasing shrimp-to-rock ratio increased and decreased leaching of Pb and Zn, respectively. Increasing experimental time to 5 and 10 d in a shrimp-amended batch caused less leaching of Pb and more of Zn. Both Pb and Zn immobilization in the concrete amendment was considered due to the increase of pH by concrete amending. The Pb leaching in the present study was considered controlled primarily by a sorption process, whilst the leaching for Zn might have been influenced by other factors such as pH and DO. Pb leaching from rock was much higher in seawater than in freshwater, with same range for Zn leaching, irrespective of leachant. It showed consistence between the laboratory data and the field conditions. Calculation procedures were established for amendment to mitigate mine drainage.
Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties
Styrene acrylic emulsions (SAEs) have emerged as a promising material for water-based coatings. However, they are still limited by their own defects in practical applications, poor weatherability, and degradation of performance at lower or higher temperatures. Here, we introduce a facile approach to producing fluorescent carbon quantum dots (CQDs) from wood processing residues and fabricating fluorescent CQD/SAE coating films via emulsion-casting. The addition of the fluorescent CQDs enhanced the optical performance of the CQD/SAE coating films. The fluorescent CQDs were prepared via a hydrothermal approach and were obtained after heating at 180 °C for 6 h at a reaction concentration of 50 mg/mL. The synthesized CQDs resulted in a high fluorescence, and the CQDs had an average size of 1.63 nm. Various concentrations of the fluorescent CQDs were doped into the SAE coating film, which improved its optical properties. We also characterized and discussed the products and then explored their optical properties. This study presents the potential of fluorescent CQD/SAE coating films for applications in anti-counterfeiting coatings, fluorescent adhesives, and papermaking.
The way forward to produce nutraceuticals from agri-food processing residues: obstacle, solution, and possibility
Food matrices contain bioactive compounds that have health benefits beyond nutritional value. The bulk of bioactive chemicals are still present in agro-industrial by-products as food matrices. Throughout the food production chain, there is a lot of agro-industrial waste that, if not managed effectively, could harm the environment, company, and how nutritiously and adequately people eat. It’s important to establish processes that maximise the use of agro-industrial by-products, such as biological technologies that improve the extraction and acquisition of bioactive compounds for the food and pharmaceutical industries. As opposed to nonbiological processes, biological procedures provide high-quality, bioactive extracts with minimum toxicity and environmental impact. Fermentation and enzymatic treatment are biological processes for obtaining bioactive compounds from agro-industrial waste. In this context, this article summarises the principal bioactive components in agro-industrial byproducts and the biological methods employed to extract them. In this review efficient utilization of bioactive compounds from agro-industrial waste more effectively in food and pharmaceutical industries has been described.