Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "programmed nuclear degradation"
Sort by:
Atg5 Regulates Selective Autophagy of the Parental Macronucleus during Tetrahymena Sexual Reproduction
Nuclear autophagy is an important selective autophagy process. The selective autophagy of sexual development micronuclei (MICs) and the programmed nuclear degradation of parental macronucleus (paMAC) occur during sexual reproduction in Tetrahymena thermophila. The molecular regulatory mechanism of nuclear selective autophagy is unclear. In this study, the autophagy-related protein Atg5 was identified from T. thermophila. Atg5 was localized in the cytoplasm in the early sexual-development stage and was localized in the paMAC in the late sexual-development stage. During this stage, the degradation of meiotic products of MIC was delayed in atg5i mutants. Furthermore, paMAC was abnormally enlarged and delayed or failed to degrade. The expression level and lipidation of Atg8.2 significantly decreased in the mutants. All these results indicated that Atg5 was involved in the regulation of the selective autophagy of paMAC by regulating Atg8.2 in Tetrahymena.
Sirtuin-mediated nuclear differentiation and programmed degradation in Tetrahymena
Abstract Background: The NAD+ -dependent histone deacetylases, known as \"sirtuins\", participate in a variety of processes critical for single- and multi-cellular life. Recent studies have elucidated the importance of sirtuin activity in development, aging, and disease; yet, underlying mechanistic pathways are not well understood. Specific sirtuins influence chromatin structure and gene expression, but differences in their pathways as they relate to distinct chromatin functions are just beginning to emerge. To further define the range of global chromatin changes dependent on sirtuins, unique biological features of the ciliated protozoan Tetrahymena thermophila can be exploited. This system offers clear spatial and temporal separation of multiple whole genome restructuring events critical for the life cycle. Results: Inhibition with nicotinamide revealed that sirtuin deacetylase activity in Tetrahymena cells promotes chromatin condensation during meiotic prophase, differentiation of heterochromatin from euchromatin during development, and chromatin condensation/degradation during programmed nuclear death. We identified a class I sirtuin, called Thd14, that resides in mitochondria and nucleoli during vegetative growth, and forms a large sub-nuclear aggregate in response to prolonged cell starvation that may be peripherally associated with nucleoli. During sexual conjugation and development Thd14 selectively concentrates in the parental nucleus prior to its apoptotic-like degradation. Conclusions: Sirtuin activity is important for several functionally distinct events requiring global chromatin condensation. Our findings suggest a novel role for sirtuins in promoting programmed pycnosis by acting on chromatin destined for degradation. The sirtuin Thd14, which displays physiological-dependent differential localization within the nucleus, is a candidate for a chromatin condensation enzyme that is coupled to nuclear degradation.
Targeted protein degradation combined with PET imaging reveals the role of host PD-L1 in determining anti-PD-1 therapy efficacy
Purpose Immunohistochemical staining of programmed death-ligand 1 (PD-L1) in tumor biopsies acquired through invasive procedures is routinely employed in clinical practice to identify patients who are most likely to benefit from anti-programmed cell death protein 1 (PD-1) therapy. Nevertheless, PD-L1 expression is observed in various cellular subsets within tumors and their microenvironments, including tumor cells, dendritic cells, and macrophages. The impact of PD-L1 expression across these different cell types on the responsiveness to anti-PD-1 treatment is yet to be fully understood. Methods We synthesized polymer-based lysosome-targeting chimeras (LYTACs) that incorporate both PD-L1-targeting motifs and liver cell-specific asialoglycoprotein receptor (ASGPR) recognition elements. Small-animal positron emission tomography (PET) imaging of PD-L1 expression was also conducted using a PD-L1-specific radiotracer 89 Zr-αPD-L1/Fab. Results The PD-L1 LYTAC platform was capable of specifically degrading PD-L1 expressed on liver cancer cells through the lysosomal degradation pathway via ASGPR without impacting the PD-L1 expression on host cells. When coupled with whole-body PD-L1 PET imaging, our studies revealed that host cell PD-L1, rather than tumor cell PD-L1, is pivotal in the antitumor response to anti-PD-1 therapy in a mouse model of liver cancer. Conclusion The LYTAC strategy, enhanced by PET imaging, has the potential to surmount the limitations of knockout mouse models and to provide a versatile approach for the selective degradation of target proteins in vivo. This could significantly aid in the investigation of the roles and mechanisms of protein functions associated with specific cell subsets in living subjects.
Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance
Abundance of PD-L1, the ligand of the anti-cancer immunotherapy target PD-1, is negatively regulated by poly-ubiquitination via the cyclin D–CDK4/cullin 3–SPOP axis and PD-1 blockade treatment in mice improved survival when combined with CDK4/6 inhibitors. Combined anti-cancer therapy Immune checkpoint blockade therapy with PD-1 or PD-L1 inhibitors has been approved for the treatment of several types of cancer, but only a small percentage of patients respond to this from of treatment. Wenyi Wei and colleagues report that the abundance of the PD-L1 protein is negatively regulated during cell cycle progression, in part through the activity of the upstream cyclin D–CDK4–SPOP–FZR1 signalling pathway. CDK4/6 inhibitor treatment increases PD-L1 levels and promotes immune evasion in vitro and in vivo . On the other hand, combined treatment with a CDK4/6 inhibitor and a PD-1 blocker has greater anti-tumour efficacy than treatment with each drug alone in mouse models. This combined approach has the potential to improve the treatment of patients with cancer. Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit 1 , 2 . However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood 3 , 4 , 5 . Recent studies revealed that response to PD-1–PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells 6 , 7 . Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1–PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D–CDK4 and the cullin 3–SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D–CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1–PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.
Programmed cell death associated with the formation of schizo-lysigenous aerenchyma in Nelumbo nucifera root
Nelumbo nucifera ( N. nucifera ) is an important aquatic economic crop with high edible, medicinal, ornamental, and ecological restoration values. Aerenchyma formation in N. nucifera root is an adaptive trait to the aquatic environment in long-term evolution. In this study, light microscopy, electron microscopy, and molecular biology techniques were used to study the process of the aerenchyma development and cytological events in N. nucifera root and the dynamic changes of aerenchyma formation under the treatment of exogenous 21% oxygen, ethylene (ET), and ET synthesis i + nhibitor 1-methylcyclopropene (1-MCP). The results showed that programmed cell death (PCD) occurred during the aerenchyma formation in N. nucifera root. Plasmalemma invagination and vacuole membrane rupture appeared in the formation stage, followed by nuclear deformation, chromatin condensation and marginalization, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) detection was positive at this time. In the expansion stage of the aerenchyma development, cytoplasmic degradation and many vesicles appeared in the cytoplasm, and organelles began to degrade. Then the plasma membrane began to degrade, and the degradation of the cell wall was the last PCD step. After 21% oxygen was continuously filled in the rhizosphere environment of N. nucifera roots, the area of aerenchyma in N. nucifera roots was smaller than that in the control group. Moreover, ET induced the earlier occurrence of aerenchyma in N. nucifera root, but also, the area of aerenchyma became larger than that of the control. On the contrary, 1-MCP inhibited the occurrence of aerenchyma to some extent. Therefore, the formation of aerenchyma in N. nucifera root resulted from PCD, and its formation mode was schizo-lysigenous. A hypoxic environment could induce aerenchyma formation in plants. ET signal was involved in aerenchyma formation in N. nucifera root and had a positive regulatory effect. This study provides relevant data on the formation mechanism of plant aerenchyma and the cytological basis for exploring the regulation mechanism of plant aerenchyma formation.
Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)
We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the number of DNA masses per petal at least doubled. This indicated chromatin fragmentation, either inside or outside the nucleus. Staining with the cationic lipophilic fluoroprobe DiOC₆ indicated that each DNA mass had an external membrane. Fluorescence microscopy of the nuclei and DNA masses revealed an initial decrease in diameter together with chromatin condensation. The diameters of these condensed nuclei were about 70% of original. Two populations of nuclear diameter, one with an average diameter about half of the other, were observed at initial stages of nuclear fragmentation. The diameter of the DNA masses then gradually decreased further. The smallest observed DNA masses had a diameter less than 10% of that of the original nucleus. Cycloheximide treatment arrested the cytometrically determined changes in DNA fluorescence, indicating protein synthesis requirement. Ethylene inhibitors (AVG and 1-MCP) had no effect on the cytometrically determined DNA changes, suggesting that these processes are not controlled by endogenous ethylene.
DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia
Programmed cell death (PCD) was studied in the petals of Antirrhinum majus, Argyranthemum frutescens, and Petunia hybrida, using DNA degradation and changes in nuclear morphology as parameters. The petals exhibit loss of turgor (wilting) as a visible symptom of PCD. DNA degradation, as shown on agarose gels, occurred in all species studied, prior to visible wilting. The number of DNA masses in all the petals of a flower, determined by flow cytometry, markedly increased in Argyranthemum and Petunia, but decreased in Antirrhinum. Many small DNA masses were observed in Argyranthemum and Petunia. The surface of each small DNA mass stained with the lipophilic fluorochrome 3,3′-dihexyloxacarbocyanine iodide (DiOC6), indicating that these masses were surrounded by a membrane. In Antirrhinum, in contrast, the chromatin fragmented into several small spherical clumps that remained inside a large membranous structure. Nuclear fragmentation, therefore, did not occur in Antirrhinum, whereas nuclear fragmentation possibly was a cause of the small DNA masses in Argyranthemum and Petunia. It is concluded that at least two contrasting nuclear morphologies exist during PCD. In the first, the chromatin fragments inside the nucleus, not accompanied—or followed—by nuclear fragmentation. In the second, a large number of DNA masses were observed each enveloped by a membrane. The second type was probably due, at least partially, to nuclear fragmentation.
Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers
We isolated several senescence-associated genes (SAGs) from the petals of morning glory (Ipomoea nil) flowers, with the aim of furthering our understanding of programmed cell death. Samples were taken from the closed bud stage to advanced visible senescence. Actinomycin D, an inhibitor of transcription, if given prior to 4 h after opening, suppressed the onset of visible senescence, which occurred at about 9 h after flower opening. The isolated genes all showed upregulation. Two cell-wall related genes were upregulated early, one encoding an extensin and one a caffeoyl-CoA-3-O-methyltransferase, involved in lignin production. A pectinacetylesterase was upregulated after flower opening and might be involved in cell-wall degradation. Some identified genes showed high homology with published SAGs possibly involved in remobilisation processes: an alcohol dehydrogenase and three cysteine proteases. One transcript encoded a leucine-rich repeat receptor protein kinase, putatively involved in signal transduction. Another transcript encoded a 14-3-3 protein, also a protein kinase. Two genes have apparently not been associated previously with senescence: the first encoded a putative SEC14, which is required for Golgi vesicle transport, the second was a putative ataxin-2, which has been related to RNA metabolism. Induction of the latter has been shown to result in cell death in yeast, due to defects in actin filament formation. The possible roles of these genes in programmed cell death are discussed.
Ultrastructural Observations and DNA Degradation Analysis of Pepper Leaves Undergoing a Hypersensitive Reaction to Xanthomonas campestris pv. Vesicatoria
Ultrastructural details of the hypersensitive reaction induced by infiltration with avirulent race 2 Xanthomonas campestris pv. vesicatoria in pepper 'Early Calwonder-10R' leaves (incompatible interaction) are reported. Affected cells displayed plasmalemma undulations and disruption, lysis of the chloroplast membrane, degeneration of other organelles, general cytoplasm disorganisation and, often, protoplast shrinkage. The nuclei contained large masses of electron-dense material, apparently formed by chromatin aggregation. In many cases a single chromatin-like layer was deposited on the inner side of the nuclear envelope leaving a finely granular matrix in the centre of the nucleus; the nucleolus usually disappeared. The nuclear envelope was sometimes ruptured and the internal matrix leaked into the cytoplasm. The content of many affected cells eventually coagulated and became very electron-dense. The walls often collapsed. All these alterations were especially visible in spongy mesophyll cells at sites where bacteria occurred in the intercellular spaces. Although some of the nuclear and cytoplasmic alterations recall certain aspects of apoptotic cell death, molecular determinations did not reveal any DNA degradation in hypersensitively reacting tissues. The first cell alterations in leaves infected with the virulent bacterial race 1 (compatible interaction) were observed only 27h after inoculation, when the cytoplasm of some cells showed limited internal disorganisation and plasmolysis at sites where bacterial colonies developed.[PUBLICATION ABSTRACT]