Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
28,789 result(s) for "proliferation and metastasis"
Sort by:
miR-92b-3p acts as a tumor suppressor by targeting Gabra3 in pancreatic cancer
Background MicroRNAs (miRNAs) can act as oncogenes or tumor suppressors by controlling cell proliferation, differentiation, metastasis and apoptosis, and miRNA dysregulation is involved in the development of pancreatic cancer (PC). Our previous study demonstrated that Gabra3 plays critical roles in cancer progression. However, whether Gabra3 is regulated by miRNAs in PC remains unknown. Methods The expression levels of miR-92b-3p and Gabra3 were measured by quantitative PCR (qPCR), immunoblotting, in situ hybridization (ISH) and immunohistochemistry (IHC). The proliferation rate of PC cells was detected by MTS assay. Wound-healing and transwell assays were used to examine the invasive abilities of PC cells. Dual-luciferase reporter assays were used to determine how miR-92b-3p regulates Gabra3. Xenograft mouse models were used to assess the role of miR-92b-3p in PC tumor formation in vivo. Results Here, we provide evidence that miR-92b-3p acted as a tumor suppressor in PC by regulating Gabra3 expression. MiR-92b-3p expression levels were lower in PC tissues than corresponding noncancerous pancreatic (CNP) tissues and were associated with a poor prognosis in PC patients. MiR-92b-3p overexpression suppressed the proliferation and invasion of PC cells in both in vivo and in vitro models. Conversely, miR-92b-3p knockdown induced an aggressive phenotype in PC cells. Mechanistically, miR-92b-3p overexpression suppressed Gabra3 expression, which then led to the inactivation of important oncogenic pathways, including the AKT/mTOR and JNK pathways. Conclusion Our results suggest that miR-92b-3p acted as a tumor suppressor by targeting Gabra3 - associated oncogenic pathways; these results provide novel insight into future treatments for PC patients.
hsa_circ_0061140 Knockdown Reverses FOXM1-Mediated Cell Growth and Metastasis in Ovarian Cancer through miR-370 Sponge Activity
Circular RNAs (circRNAs) are a class of noncoding RNAs that regulate gene expression at the posttranscriptional level. The specific functions of circRNAs in ovarian cancer are yet to be established. Previous sequencing analyses have revealed an abnormal expression of hsa_circ_0061140 in ovarian cancer. The main aim of the present study is to establish the specific role of hsa_circ_0061140 in ovarian cancer. circRNA expression in ovarian cancer cells was detected via real-time qPCR. The effects on specific cellular characteristics (proliferation, migration, and the EMT) and subcellular localization of hsa_circ_0061140 were assessed via RNA fluorescence in situ hybridization, knockdown, and luciferase reporter assays in the SKOV3 and A2780 cell lines. Tumorigenesis was induced in nude mice to assess the effects of hsa_circ_0061140 on ovarian cancer growth in vivo. Our results showed that hsa_circ_0061140 was upregulated in ovarian cancer cell lines. Knockdown of hsa_circ_0061140 suppressed cell proliferation and migration, both in vivo and in vitro, by inhibiting FOXM1 expression through sponging miR-370. Overexpression of FOXM1 or suppression of miR-370 rescued hsa_circ_0061140 silencing-induced inhibition of cell proliferation, migration, and the EMT. The associations among hsa_circ_0061140, miR-370, and FOXM1 were confirmed via bioinformatic prediction and fluorescein reporter experiments. Thus, hsa_circ_0061140 appeared to function as a competing endogenous RNA of miR-370 that promoted cell growth and metastasis in ovarian cancer through regulation of the miR-370/FOXM1 pathway mediating EMT.
PAFAH1B3 is a KLF9 target gene that promotes proliferation and metastasis in pancreatic cancer
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. Uncontrolled cell proliferation, invasion and migration of pancreatic cancer cells are the fundamental causes of death in PDAC patients. Our previous studies showed that KLF9 inhibits the proliferation, invasion and migration of pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In this study, we found that platelet-activating factor acetylhydrolase IB3 (PAFAH1B3) is highly expressed in pancreatic cancer tissues and cells. In vitro and in vivo studies showed that overexpression of PAFAH1B3 promoted the proliferation and invasion of pancreatic cancer cells, while downregulation of PAFAH1B3 inhibited these processes. We found that KLF9 expression is negatively correlated with PAFAH1B3 expression in pancreatic cancer tissues and cells. Western blotting revealed that KLF9 negatively regulates the expression of PAFAH1B3 in pancreatic cancer tissues and cells. Rescue experiments showed that overexpression of PAFAH1B3 could partially attenuate the suppression of pancreatic cancer cell proliferation, invasion and migration induced by KLF9 overexpression. Finally, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out, and the results showed that KLF9 directly binds to the promoter of PAFAH1B3 and inhibits its transcriptional activity. In conclusion, our study indicated that KLF9 can inhibit the proliferation, invasion, migration and metastasis of pancreatic cancer cells by inhibiting PAFAH1B3.
FNDC3B 3′‐UTR shortening escapes from microRNA‐mediated gene repression and promotes nasopharyngeal carcinoma progression
Alternative polyadenylation (APA), which induces shortening of the 3′‐UTR, is emerging as an important feature in cancer development and progression. Nevertheless, the effects and mechanisms of APA‐induced 3′‐UTR shortening in nasopharyngeal carcinoma (NPC) remain largely unclear. Fibronectin type III domain containing 3B (FNDC3B) tended to use proximal polyadenylation site and produce shorter 3′‐UTR according to our previous sequencing study. Herein, we found that FNDC3B with shorter 3′‐UTR could escape from miRNA‐mediated gene repression, and caused its increased expression in NPC. Knocking down of FNDC3B inhibited NPC cell proliferation, migration, invasion, and metastasis in vitro and in vivo. Overexpression of FNDC3B, especially those with shorter 3′‐UTR, promoted NPC progression. Furthermore, the mechanism study revealed that FNDC3B could bind to and stabilize myosin heavy chain 9 (MYH9) to activate the Wnt/β‐catenin signaling pathway. In addition, MYH9 could reverse the inhibitory effects of FNDC3B knockdown in NPC. Altogether, our results suggested that the 3′‐UTR shortening of FNDC3B mRNA mediated its overexpression in NPC and promoted NPC progression by targeting MYH9. This newly identified FNDC3B‐MYH9‐Wnt/β‐catenin axis could represent potential targets for individualized treatment in NPC. FNDC3B tended to use proximal polyadenylation site and produced shorter 3′‐UTR. FNDC3B with shorter 3′‐UTR could escape from microRNA‐mediated gene repression, and caused its increased expression in nasopharyngeal carcinoma (NPC) and promoted NPC progression by targeting MYH9.
Acetylation of PGK1 at lysine 323 promotes glycolysis, cell proliferation, and metastasis in luminal A breast cancer cells
Background In prior research employing iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) technology, we identified a range of proteins in breast cancer tissues exhibiting high levels of acetylation. Despite this advancement, the specific functions and implications of these acetylated proteins in the context of cancer biology have yet to be elucidated. This study aims to systematically investigate the functional roles of these acetylated proteins with the objective of identifying potential therapeutic targets within breast cancer pathophysiology. Methods Acetylated targets were identified through bioinformatics, with their expression and acetylation subsequently confirmed. Proteomic analysis and validation studies identified potential acetyltransferases and deacetylases. We evaluated metabolic functions via assays for catalytic activity, glucose consumption, ATP levels, and lactate production. Cell proliferation and metastasis were assessed through viability, cycle analysis, clonogenic assays, PCNA uptake, wound healing, Transwell assays, and MMP/EMT marker detection. Results Acetylated proteins in breast cancer were primarily involved in metabolism, significantly impacting glycolysis and the tricarboxylic acid cycle. Notably, PGK1 showed the highest acetylation at lysine 323 and exhibited increased expression and acetylation across breast cancer tissues, particularly in T47D and MCF-7 cells. Notably, 18 varieties acetyltransferases or deacetylases were identified in T47D cells, among which p300 and Sirtuin3 were validated for their interaction with PGK1. Acetylation at 323 K enhanced PGK1's metabolic role by boosting its activity, glucose uptake, ATP production, and lactate output. This modification also promoted cell proliferation, as evidenced by increased viability, S phase ratio, clonality, and PCNA levels. Furthermore, PGK1-323 K acetylation facilitated metastasis, improving wound healing, cell invasion, and upregulating MMP2, MMP9, N-cadherin, and Vimentin while downregulating E-cadherin. Conclusion PGK1-323 K acetylation was significantly elevated in T47D and MCF-7 luminal A breast cancer cells and this acetylation could be regulated by p300 and Sirtuin3. PGK1-323 K acetylation promoted cell glycolysis, proliferation, and metastasis, highlighting novel epigenetic targets for breast cancer therapy.
UBL4A inhibits autophagy-mediated proliferation and metastasis of pancreatic ductal adenocarcinoma via targeting LAMP1
Background Ubiquitin-like protein 4A (UBL4A) plays a significant role in protein metabolism and the maintenance of cellular homeostasis. In cancer, UBL4A represses tumorigenesis and is involved in various signaling pathways. Pancreatic ductal adenocarcinoma (PDAC) is still a major cause of cancer-related death and the underlying molecular mechanism of UBL4A and PDAC remains unknown. Methods First, the prognostic role of UBL4A and its expression in human PDAC patients and in pancreatic cancer cell lines were detected by survival analysis and qRT-PCR, western blotting, and immunohistochemistry. Next, the effects of UBL4A on proliferation and metastasis in pancreatic cancer were evaluated by functional assays in vitro and in vivo. In addition, chloroquine was introduced to determine the role of autophagy in UBL4A-related tumor proliferation and metastasis. Ultimately, coimmunoprecipitation was used to confirm the interaction between UBL4A and lysosome associated membrane protein-1 (LAMP1), and western blotting was performed to explore the UBL4A mechanism. Results We found that UBL4A was decreased in PDAC and that high levels of UBL4A correlated with a favorable prognosis. We observed that UBL4A inhibited tumor proliferation and metastasis through suppression of autophagy, a critical intracellular catabolic process that reportedly protects cells from nutrient starvation and other stress conditions. UBL4A caused impaired autophagic degradation in vitro, a crucial process in autophagy, by disturbing the function of lysosomes and contributing to autophagosome accumulation. We found a positive correlation between UBL4A and LAMP1. Furthermore, UBL4A caused lysosomal dysfunction by directly interacting with LAMP1, and LAMP1 overexpression reversed the antitumor effects of UBL4A in pancreatic cancer. In addition, we demonstrated that UBL4A suppressed tumor growth and metastasis in a pancreatic orthotopic tumor model. Conclusions These findings suggest that UBL4A exerts an antitumor effect on autophagy-related proliferation and metastasis in PDAC by directly targeting LAMP1. Herein, we describe a novel mechanism of UBL4A that suppresses the progression of pancreatic cancer. UBL4A might be a promising target for the treatment and prognostication of PDAC.
miR-503 suppresses the proliferation and metastasis of esophageal squamous cell carcinoma by triggering autophagy via PKA/mTOR signaling
MicroRNA (miR)-503 is involved in the regulation of the malignant phenotype in multiple tumor types, and has been proven to be a novel diagnostic and therapeutic target; however, its function and mechanisms of action have not yet been fully elucidated in esophageal squamous cell carcinoma (ESCC). In the current study, we detected miR-503 expression by RT-qPCR and found that miR-503 expression was increased in ESCC, but negatively correlated with lymph node metastasis, TNM stage and tumor differentiation. Functionally, we confirmed that miR-503 inhibited the proliferation and metastasis of ESCC cells by triggering cellular autophagy. Mechanistically, we confirmed that miR-503 exerted its biological effects by targeting protein kinase CAMP-activated catalytic subunit alpha (PRKACA) in ESCC by dual luciferase reporter assay. Moreover, miR-503 was found to trigger autophagy in ESCC cells through the protein kinase A (PKA)/mammalian target of rapamycin (mTOR) pathway. Taken together, our results demonstrate that miR-503 suppresses the proliferation and metastasis of ESCC via the activation of autophagy, mediated by the PKA/mTOR signaling pathway.
Tumor-Associated Macrophage Targeting of Nanomedicines in Cancer Therapy
The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the “Seed and Soil” theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.
Demethylase FTO enhances the PI3K/Akt signaling to promote gastric cancer malignancy
Enhanced expression of fat mass and obesity-associated protein (FTO) has been reported in gastric cancer (GC). Bioinformatical studies indicate that FTO expression is correlated with the patients’ overall survival (OS). How FTO exerts its promotion effects on GC development and affects OS remains largely unknown. In this study, the prognostic relevance of FTO expression in human GC tissues and the molecular mechanisms underlying FTO’s promotion roles were investigated. Kaplan–Meier survival curve analysis revealed that the patients with high FTO levels had shorter OS compared to those with low FTO expression ( p  < 0.0001). Univariate and multivariate COX regression analyses showed that the patients’ OS was affected by FTO status ( p  < 0.0001, p  = 0.001, respectively). FTO knockdown in HGC27 cells by shRNAs reduced cell proliferation, colony formation, migration and invasion, while FTO overexpression in AGS cells had reverse effects. FTO knockdown in HGC27 cells also suppressed the tumor growth in a mouse xenograft model. High-throughput transcriptome sequencing indicated that FTO enhanced the PI3K/Akt signaling, which was confirmed in vitro. In summary, our research revealed that FTO is a potent prognostic biomarker of GC. FTO enhances the PI3K/Akt signaling and thus, promotes GC development. Graphical Abstract
LINC00466 Impacts Cell Proliferation, Metastasis and Sensitivity to Temozolomide of Glioma by Sponging miR-137 to Regulate PPP1R14B Expression
LINC00466 is a newfound long non-coding RNA (lncRNA) that has been rarely explored in cancers. However, the specific role and molecular mechanism of LINC00466 in glioma remain to be further elucidated. Bioinformatic analysis was used to screen differentially expressed genes. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of LINC00466, microRNA-137 (miR-137) and protein phosphatase 1 regulatory subunit 14B (PPP1R14B). Dual-luciferase reporter gene assay and RNA binding protein Immunoprecipitation (RIP) assays were employed to verify the binding relationship among LINC00466, miR-137 and PPP1R14B. The sensitivity of glioma cells to temozolomide (TMZ) was measured by cell counting kit-8 (CCK8) assay. The xenograft nude models were used to test the effects of LINC00466 on glioma tumor growth . Highly expressed LINC00466 and PPP1R14B and lowly expressed miR-137 were eventually revealed in glioma tissues. Overexpression of LINC00466 could promote proliferation, metastasis and drug sensitivity to TMZ of glioma cells. LINC00466 could bind to miR-137, and up-regulation of miR-137 could attenuate the enhancing effects caused by LINC00466 overexpression. We took a further step and found that miR-137 could bind to PPP1R14B. Besides, LINC00466 could function as a sponge to miR-137 to regulate PPP1R14B. In addition, overexpression of LINC00466 could promote tumor growth . These findings validate LINC00466 could restrain the miR-137 expression to up-regulate PPP1R14B and therefore promote proliferation, metastasis and resistance to TMZ of glioma.