Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "propagule arrival"
Sort by:
Role of Propagule Pressure in Biological Invasions
Although most studies of factors contributing to successful establishment and spread of non-native species have focused on species traits and characteristics (both biotic and abiotic), increasing empirical and statistical evidence implicates propagule pressure—propagule sizes, propagule numbers, and temporal and spatial patterns of propagule arrival—as important in both facets of invasion. Increasing propagule size enhances establishment probability primarily by lessening effects of demographic stochasticity, whereas propagule number acts primarily by diminishing impacts of environmental stochasticity. A continuing rain of propagules, particularly from a variety of sources, may erase or vitiate the expected genetic bottleneck for invasions initiated by few individuals (as most are), thereby enhancing likelihood of survival. For a few species, recent molecular evidence suggests ongoing propagule pressure aids an invasion to spread by introducing genetic variation adaptive for new areas and habitats. This phenomenon may also explain some time lags between establishment of a non-native species and its spread to become an invasive pest.
Biodiversity and ecosystem functioning: It is time for dispersal experiments
The experimental study of the relationship between biodiversity and ecosystem function has mainly addressed the effect of species and number of functional groups. In theory, this approach has mainly focused on how extinction affects function, whereas dispersal limitation of ecosystem function has been rarely discussed. A handful of seed introduction experiments, as well as numerous observations of the effects of long‐distance dispersal of alien species, indicate that ecosystem function may be strongly determined by dispersal limitation at the local, regional and/or global scales. We suggest that it is time to replace biodiversity manipulation experiments, based on random draw of species, with those addressing realistic scenarios of either extinction or dispersal. Experiments disentangling the dispersal limitation of ecosystem function should have to take into account the probability of arrival. The latter is defined as the probability that a propagule of a particular species will arrive at a particular community. Arrival probability depends on the dispersal ability and the number of propagules of a species, the distance a species needs to travel, and the permeability of the matrix landscape. Current databases, in particular those in northwestern and central Europe now enable robust estimation of arrival probability in plant communities. We suggest a general hypothesis claiming that dispersal limitation according to arrival probability will have ecosystem‐level effects different from those arising due to random arrival. This hypothesis may be rendered more region‐, landscape‐ or ecosystem‐specific by estimating arrival probabilities for different background conditions.
Predicting and managing plant invasions on offshore islands
Resources for biodiversity conservation are limited and it is therefore imperative that management actions that have the best chance of success are prioritized. Non‐native species (NNS) are one of the key problems facing biodiversity conservation, so understanding how NNS disperse and establish can inform more effective conservation planning and management. Using a novel Bayesian belief network model, we investigated non‐native plant dispersal on the approximately 550 islands along the Pilbara coast, Western Australia, and identified priority species and locations for targeted management. Of a total of around 9,000 weed arrivals onto the islands, 1,661 arrivals across 14 weed species had some probability of establishment. Suggested management actions in these cases would be education campaigns to inform visitors about the risk of accidental transport of propagules, quarantine programs, and eradication. For the seven weed species that arrived only via human dispersal and had a >10% chance of establishment on five islands, surveillance, and control of new arrivals would be the recommended management actions. Removal of propagule source populations would not be a cost‐effective management strategy. The inherent flexibility of our model means that different objectives can be analyzed in a transparent way, making it a powerful tool for guiding effective targeted action, derived from an explicit decision‐making framework.
Biodiversity and ecosystem functioning: It is time for dispersal experiments
The experimental study of the relationship between bio-diversity and ecosystem function has mainly addressed the effect of species and number of functional groups. In theory, this approach has mainly focused on how extinction affects function, whereas dispersal limitation of ecosystem function has been rarely discussed. A handful of seed introduction experiments, as well as numerous observations of the effects of long-distance dispersal of alien species, indicate that ecosystem function may be strongly determined by dispersal limitation at the local, regional and/or global scales. We suggest that it is time to replace biodiversity manipulation experiments, based on random draw of species, with those addressing realistic scenarios of either extinction or dispersal. Experiments disentangling the dispersal limitation of ecosystem function should have to take into account the probability of arrival. The latter is defined as the probability that a propagule of a particular species will arrive at a particular community. Arrival probability depends on the dispersal ability and the number of propagules of a species, the distance a species needs to travel, and the permeability of the matrix landscape. Current databases, in particular those in northwestern and central Europe now enable robust estimation of arrival probability in plant communities. We suggest a general hypothesis claiming that dispersal limitation according to arrival probability will have ecosystem-level effects different from those arising due to random arrival. This hypothesis may be rendered more region-, landscape- or ecosystem-specific by estimating arrival probabilities for different background conditions.