Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
318,139 result(s) for "prostate cancer"
Sort by:
Treatment Landscape for Patients with Castration-Resistant Prostate Cancer: Patient Selection and Unmet Clinical Needs
Metastatic castration resistant prostate cancer (CRPC) is an inevitably fatal disease. However, in recent years, several treatments have been shown to improve the outcome of CRPC patients both in the non-metastatic (nmCRPC) as well as the metastatic setting (mCRPC). In nmCRPC patients with a PSA doubling time < 10 months, the addition of enzalutamide, apalutamide and darolutamide to androgen deprivation therapy (ADT) compared to ADT alone resulted in improved metastases free (MFS) and overall survival (OS). For mCRPC patients, several treatment options have been shown to be effective: two taxane based chemotherapies (docetaxel and cabazitaxel), two androgen-receptor pathway inhibitors (ARPI) (abiraterone and enzalutamide), two radiopharmaceutical agents (radium 223 and 177Lutetium-PSMA-617), one immunotherapy treatment (sipuleucel-T) and two poly ADP-ribose polymerase (PARP) inhibitors (olaparib and rucaparib). Pembrolizumab is US Food and Drug Administration (FDA) approved in all MSI high solid tumors, although a very small proportion of prostate cancer patients harboring this characteristic will benefit. Despite having a broad variety of treatments available, there are still several unmet clinical needs for CRPC. The objective of this review was to describe the therapeutic landscape in CRPC patients, to identify criteria for selecting patients for specific treatments currently available, and to address the current challenges in this setting.
Dr. Patrick Walsh's guide to surviving prostate cancer
\"Each year, more than 230,000 men are diagnosed with prostate cancer, and 30 to 40 percent of patients who are diagnosed will eventually relapse. But the good news is that more men are being cured of this disease than ever before. Now in a revised third edition, this lifesaving guide by Dr. Patrick Walsh and award-winning science writer Janet Farrar Worthington offers a message of hope to every man facing this illness. Prostate cancer is a different disease in every man, which means that the right treatment varies for each man. Readers will discover their risk factors, simple changes that can reduce the risk of developing the disease, treatment options, and more\"--Amazon.com.
Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches
Prostate cancer is one of the malignancies that affects men and significantly contributes to increased mortality rates in men globally. Patients affected with prostate cancer present with either a localized or advanced disease. In this review, we aim to provide a holistic overview of prostate cancer, including the diagnosis of the disease, mutations leading to the onset and progression of the disease, and treatment options. Prostate cancer diagnoses include a digital rectal examination, prostate-specific antigen analysis, and prostate biopsies. Mutations in certain genes are linked to the onset, progression, and metastasis of the cancer. Treatment for localized prostate cancer encompasses active surveillance, ablative radiotherapy, and radical prostatectomy. Men who relapse or present metastatic prostate cancer receive androgen deprivation therapy (ADT), salvage radiotherapy, and chemotherapy. Currently, available treatment options are more effective when used as combination therapy; however, despite available treatment options, prostate cancer remains to be incurable. There has been ongoing research on finding and identifying other treatment approaches such as the use of traditional medicine, the application of nanotechnologies, and gene therapy to combat prostate cancer, drug resistance, as well as to reduce the adverse effects that come with current treatment options. In this article, we summarize the genes involved in prostate cancer, available treatment options, and current research on alternative treatment options.
Neuroendocrine and Aggressive-Variant Prostate Cancer
In prostate cancer, neuroendocrine (NE) differentiation may rarely present de novo or more frequently arises following hormonal therapy in patients with castration-resistant prostate cancer (CRPC). Its distinct phenotype is characterized by an aggressive clinical course, lack of responsiveness to hormonal therapies and poor prognosis. Importantly, a subset of CRPC patients exhibits an aggressive-variant disease with very similar clinical and molecular characteristics to small-cell prostate cancer (SCPC) even though tumors do not have NE differentiation. This aggressive-variant prostate cancer (AVPC) also shares the sensitivity of SCPC to platinum-based chemotherapy albeit with short-lived clinical benefit. As optimal treatment strategies for AVPC remain elusive, currently ongoing research efforts aim to enhance our understanding of the biology of this disease entity and improve treatment outcomes for our patients. This review is an overview of our current knowledge on prostate cancer with NE differentiation and AVPC, with a focus on their clinical characteristics and management, including available as well as experimental therapeutic strategies.
E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET
RationaleThe development of consensus guidelines for interpretation of Prostate-Specific Membrane Antigen (PSMA)-Positron Emission Tomography (PET) is needed to provide more consistent reports in clinical practice. The standardization of PSMA-PET interpretation may also contribute to increasing the data reproducibility within clinical trials. Finally, guidelines in PSMA-PET interpretation are needed to communicate the exact location of findings to referring physicians, to support clinician therapeutic management decisions.MethodsA panel of worldwide experts in PSMA-PET was established. Panelists were selected based on their expertise and publication record in the diagnosis or treatment of PCa, in their involvement in clinical guidelines and according to their expertise in the clinical application of radiolabeled PSMA inhibitors. Panelists were actively involved in all stages of a modified, nonanonymous, Delphi consensus process.ResultsAccording to the findings obtained by modified Delphi consensus process, panelist recommendations were implemented in a structured report for PSMA-PET.ConclusionsThe E-PSMA standardized reporting guidelines, a document supported by the European Association of Nuclear Medicine (EANM), provide consensus statements among a panel of experts in PSMA-PET imaging, to develop a structured report for PSMA-PET in prostate cancer and to harmonize diagnostic interpretation criteria.
Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation
Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.
Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer
PurposeProstate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) is used for (re)staging prostate cancer (PCa) and as a biomarker for evaluating response to therapy, but lacks established response criteria. A panel of PCa experts in nuclear medicine, radiology, and/or urology met on February 21, 2020, in Amsterdam, The Netherlands, to formulate criteria for PSMA PET/CT-based response in patients treated for metastatic PCa and optimal timing to use it.MethodsPanelists received thematic topics and relevant literature prior to the meeting. Statements on how to interpret response and progression on therapy in PCa with PSMA PET/CT and when to use it were developed. Panelists voted anonymously on a nine-point scale, ranging from strongly disagree (1) to strongly agree (9). Median scores described agreement and consensus.ResultsPSMA PET/CT consensus statements concerned utility, best timing for performing, criteria for evaluation of response, patients who could benefit, and handling of radiolabeled PSMA PET tracers. Consensus was reached on all statements. PSMA PET/CT can be used before and after any local and systemic treatment in patients with metastatic disease to evaluate response to treatment. Ideally, PSMA PET/CT imaging criteria should categorize patients as responders, patients with stable disease, partial response, and complete response, or as non-responders. Specific clinical scenarios such as oligometastatic or polymetastatic disease deserve special consideration.ConclusionsAdoption of PSMA PET/CT should be supported by indication for appropriate use and precise criteria for interpretation. PSMA PET/CT criteria should categorize patients as responders or non-responders. Specific clinical scenarios deserve special consideration.
RNA-binding protein DDX3 mediates posttranscriptional regulation of androgen receptor
Prostate cancer (CaP) driven by androgen receptor (AR) is treated with androgen deprivation; however, therapy failure results in lethal castration-resistant prostate cancer (CRPC). AR-low/negative (ARL/−) CRPC subtypes have recently been characterized and cannot be targeted by hormonal therapies, resulting in poor prognosis. RNA-binding protein (RBP)/helicase DDX3 (DEAD-box helicase 3 X-linked) is a key component of stress granules (SG) and is postulated to affect protein translation. Here, we investigated DDX3-mediated posttranscriptional regulation of AR mRNA (messenger RNA) in CRPC. Using patient samples and preclinical models, we objectively quantified DDX3 and AR expression in ARL/− CRPC. We utilized CRPC models to identify DDX3:AR mRNA complexes by RNA immunoprecipitation, assess the effects of DDX3 gain/loss-of-function on AR expression and signaling, and address clinical implications of targeting DDX3 by assessing sensitivity to AR-signaling inhibitors (ARSI) in CRPC xenografts in vivo. ARL/− CRPC expressed abundant AR mRNA despite diminished levels of AR protein. DDX3 protein was highly expressed in ARL/− CRPC, where it bound to AR mRNA. Consistent with a repressive regulatory role, DDX3 localized to cytoplasmic puncta with SG marker PABP1 in CRPC. While induction of DDX3-nucleated SGs resulted in decreased AR protein expression, inhibiting DDX3 was sufficient to restore 1) AR protein expression, 2) AR signaling, and 3) sensitivity to ARSI in vitro and in vivo. Our findings implicate the RBP protein DDX3 as a mechanism of posttranscriptional regulation for AR in CRPC. Clinically, DDX3may be targetable for sensitizing ARL/− CRPC to AR-directed therapies.