Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
20,319 result(s) for "protein crystal structure"
Sort by:
Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens
The S100A8/S100A9 heterodimer calprotectin (CP) functions in the host response to pathogens through a mechanism termed “nutritional immunity.” CP binds Mn ²⁺ and Zn ²⁺ with high affinity and starves bacteria of these essential nutrients. Combining biophysical, structural, and microbiological analysis, we identified the molecular basis of Mn ²⁺ sequestration. The asymmetry of the CP heterodimer creates a single Mn ²⁺-binding site from six histidine residues, which distinguishes CP from all other Mn ²⁺-binding proteins. Analysis of CP mutants with altered metal-binding properties revealed that, despite both Mn ²⁺ and Zn ²⁺ being essential metals, maximal growth inhibition of multiple bacterial pathogens requires Mn ²⁺ sequestration. These data establish the importance of Mn ²⁺ sequestration in defense against infection, explain the broad-spectrum antimicrobial activity of CP relative to other S100 proteins, and clarify the impact of metal depletion on the innate immune response to infection.
B-Factor Rescaling for Protein Crystal Structure Analyses
The B-factor, also known as the atomic displacement parameter, is a fundamental metric in crystallography for quantifying the positional flexibility of atoms within crystal lattices. In structural biology, various developments have expanded the use of B-factors beyond conventional crystallographic analysis, allowing for a deeper understanding of protein flexibility, enzyme manipulation, and an improved understanding of molecular dynamics. However, the interpretation of B-factors is complicated by their sensitivity to various experimental and computational factors, necessitating rigorous rescaling methods to ensure meaningful comparisons across different structures. This article provides an in-depth description of rescaling approaches used for B-factors. It includes an examination of several methods for managing conformational disorder and selecting the atom types required for the analysis.
Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition
Lactose permease of Escherichia coli (LacY) with a single-Cys residue in place of A122 (helix IV) transports galactopyranosides and is specifically inactivated by methanethiosulfonyl-galactopyranosides (MTS-gal), which behave as unique suicide substrates. In order to study the mechanism of inactivation more precisely, we solved the structure of single-Cys122 LacY in complex with covalently bound MTS-gal. This structure exhibits an inward-facing conformation similar to that observed previously with a slight narrowing of the cytoplasmic cavity. MTS-gal is bound covalently, forming a disulfide bond with C122 and positioned between R144 and W151. E269, a residue essential for binding, coordinates the C-4 hydroxyl of the galactopyranoside moiety. The location of the sugar is in accord with many biochemical studies.
Unsupervised determination of protein crystal structures
We present a method for automatic solution of protein crystal structures. The method proceeds with a single initial model obtained, for instance, by molecular replacement (MR). If a good-quality search model is not available, as often is the case with MR of distant homologs, our method first can automatically screen a large pool of poorly placed models and single out promising candidates for further processing if there are any. We demonstrate its utility by solving a set of synthetic cases in the 2.9- to 3.45-Å resolution.
Structural and mechanistic insights into the complexes formed by Wolbachia cytoplasmic incompatibility factors
Wolbachia bacteria, inherited through the female germ line, infect a large fraction of arthropod species. Many Wolbachia strains manipulate host reproduction, most commonly through cytoplasmic incompatibility (CI). CI, a conditional male sterility, results when Wolbachia-infected male insects mate with uninfected females; viability is restored if the female is similarly infected (called “rescue”). CI is used to help control mosquito-borne viruses such as dengue and Zika, but its mechanisms remain unknown. The coexpressed CI factors CifA and CifB form stable complexes in vitro, but the timing and function of this interaction in the insect are unresolved. CifA expression in the female germline is sufficient for rescue. We report high-resolution structures of a CI-factor complex, CinA-CinB, which utilizes a unique binding mode between the CinA rescue factor and the CinB nuclease; the structures were validated by biochemical and yeast growth analyses. Importantly, transgenic expression in Drosophila of a nonbinding CinA mutant, designed based on the CinA-CinB structure, suggests CinA expressed in females must bind CinB imported by sperm in order to rescue embryonic viability. Binding between cognate factors is conserved in an enzymatically distinct CI system, CidA-CidB, suggesting universal features in Wolbachia CI induction and rescue.
A Geometric Definition of Short to Medium Range Hydrogen-Mediated Interactions in Proteins
We present a method to rapidly identify hydrogen-mediated interactions in proteins (e.g., hydrogen bonds, hydrogen bonds, water-mediated hydrogen bonds, salt bridges, and aromatic π-hydrogen interactions) through heavy atom geometry alone, that is, without needing to explicitly determine hydrogen atom positions using either experimental or theoretical methods. By including specific real (or virtual) partner atoms as defined by the atom type of both the donor and acceptor heavy atoms, a set of unique angles can be rapidly calculated. By comparing the distance between the donor and the acceptor and these unique angles to the statistical preferences observed in the Protein Data Bank (PDB), we were able to identify a set of conserved geometries (15 for donor atoms and 7 for acceptor atoms) for hydrogen-mediated interactions in proteins. This set of identified interactions includes every polar atom type present in the Protein Data Bank except OE1 (glutamate/glutamine sidechain) and a clear geometric preference for the methionine sulfur atom (SD) to act as a hydrogen bond acceptor. This method could be readily applied to protein design efforts.
Globular protein backbone conformational disorder in crystal structures
Proteins are not static molecules but dynamic entities able to modify their structure for several reasons, from the necessity to recognize partners to the regulation of their thermodynamic stability. Conformational disorder is frequent in protein structures and atoms can have, in protein crystal structures, two or more alternative, equilibrium positions close to each other. Here, a set of protein crystal structures refined at very high resolution (1 Å or better) is examined to characterize the conformational disorder of the backbone atoms, which is not infrequent: about 15% of the protein backbone atoms are conformationally disordered and three quarters of them have been deposited with two or more equilibrium positions (most of the others were not detected in the electron density maps). Several structural features have been examined and it was observed that Cα atoms tend to be disordered more frequently than the other backbone atoms, likely because their disorder is induced by disordered side chains: side-chain disorder is two times more frequent than backbone disorder. Surprisingly, backbone disorder is only slightly more frequent in loops than in helices and strands and this is in agreement with the observation that backbone disorder is a localized phenomenon: in about 80% of the cases, it is observed in one amino acid and not in its neighbors. However, although backbone disorder does not cluster along the polypeptide sequence, it tends to cluster in 3D, since backbone-disordered amino acids distant in sequence are close in the 3D space.
‘All That Glitters Is Not Gold’: High-Resolution Crystal Structures of Ligand-Protein Complexes Need Not Always Represent Confident Binding Poses
Our understanding of the structure–function relationships of biomolecules and thereby applying it to drug discovery programs are substantially dependent on the availability of the structural information of ligand–protein complexes. However, the correct interpretation of the electron density of a small molecule bound to a crystal structure of a macromolecule is not trivial. Our analysis involving quality assessment of ~0.28 million small molecule–protein binding site pairs derived from crystal structures corresponding to ~66,000 PDB entries indicates that the majority (65%) of the pairs might need little (54%) or no (11%) attention. Out of the remaining 35% of pairs that need attention, 11% of the pairs (including structures with high/moderate resolution) pose serious concerns. Unfortunately, most users of crystal structures lack the training to evaluate the quality of a crystal structure against its experimental data and, in general, rely on the resolution as a ‘gold standard’ quality metric. Our work aims to sensitize the non-crystallographers that resolution, which is a global quality metric, need not be an accurate indicator of local structural quality. In this article, we demonstrate the use of several freely available tools that quantify local structural quality and are easy to use from a non-crystallographer’s perspective. We further propose a few solutions for consideration by the scientific community to promote quality research in structural biology and applied areas.
Do we see what we should see? Describing non-covalent interactions in protein structures including precision
The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision ( i.e. to too many decimal places) is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges, i.e. ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and α-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures), takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.
PDB2CD visualises dynamics within protein structures
Proteins tend to have defined conformations, a key factor in enabling their function. Atomic resolution structures of proteins are predominantly obtained by either solution nuclear magnetic resonance (NMR) or crystal structure methods. However, when considering a protein whose structure has been determined by both these approaches, on many occasions, the resultant conformations are subtly different, as illustrated by the examples in this study. The solution NMR approach invariably results in a cluster of structures whose conformations satisfy the distance boundaries imposed by the data collected; it might be argued that this is evidence of the dynamics of proteins when in solution. In crystal structures, the proteins are often in an energy minimum state which can result in an increase in the extent of regular secondary structure present relative to the solution state depicted by NMR, because the more dynamic ends of alpha helices and beta strands can become ordered at the lower temperatures. This study examines a novel way to display the differences in conformations within an NMR ensemble and between these and a crystal structure of a protein. Circular dichroism (CD) spectroscopy can be used to characterise protein structures in solution. Using the new bioinformatics tool, PDB2CD, which generates CD spectra from atomic resolution protein structures, the differences between, and possible dynamic range of, conformations adopted by a protein can be visualised.