Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
62
result(s) for
"proteotoxicity"
Sort by:
Cellular Proteostasis in Neurodegeneration
by
Rosen, Benjamin
,
Møller, Simon G.
,
Patil, Ketan S.
in
Aging
,
Amyotrophic lateral sclerosis
,
Apoptosis
2019
The term proteostasis reflects the fine-tuned balance of cellular protein levels, mediated through a vast network of biochemical pathways. This requires the regulated control of protein folding, post-translational modification, and protein degradation. Due to the complex interactions and intersection of proteostasis pathways, exposure to stress conditions may lead to a disruption of the entire network. Incorrect protein folding and/or modifications during protein synthesis results in inactive or toxic proteins, which may overload degradation mechanisms. Further, a disruption of autophagy and the endoplasmic reticulum degradation pathway may result in additional cellular stress which could ultimately lead to cell death. Neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and Amyotrophic Lateral Sclerosis all share common risk factors such as oxidative stress, aging, environmental stress, and protein dysfunction; all of which alter cellular proteostasis. The differing pathologies observed in neurodegenerative diseases are determined by factors such as location-specific neuronal death, source of protein dysfunction, and the cell’s ability to counter proteotoxicity. In this review, we discuss how the disruption in cellular proteostasis contributes to the onset and progression of neurodegenerative diseases.
Journal Article
Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony
2023
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Journal Article
Stabilization of amyloidogenic immunoglobulin light chains by small molecules
by
Wilson, Ian A.
,
Mortenson, David E.
,
Kay, Lewis E.
in
Amyloid - chemistry
,
Amyloid - metabolism
,
Amyloidogenesis
2019
In Ig light-chain (LC) amyloidosis (AL), the unique antibody LC protein that is secreted by monoclonal plasma cells in each patient misfolds and/or aggregates, a process leading to organ degeneration. As a step toward developing treatments for AL patients with substantial cardiac involvement who have difficulty tolerating existing chemotherapy regimens, we introduce small-molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which can slow or stop the amyloidogenicity cascade at its origin. A protease-coupled fluorescence polarization-based high-throughput screen was employed to identify small molecules that kinetically stabilize LCs. NMR and X-ray crystallographic data demonstrate that at least one structural family of hits bind at the LC–LC dimerization interface within full-length LCs, utilizing variable-domain residues that are highly conserved in most AL patients. Stopping the amyloidogenesis cascade at the beginning is a proven strategy to ameliorate postmitotic tissue degeneration.
Journal Article
Proteotoxicity and Neurodegenerative Diseases
by
Ruz, Clara
,
Bandres-Ciga, Sara
,
Vives Montero, Francisco
in
Aging
,
Amyotrophic lateral sclerosis
,
Animals
2020
Neurodegenerative diseases are a major burden for our society, affecting millions of people worldwide. A main goal of past and current research is to enhance our understanding of the mechanisms underlying proteotoxicity, a common theme among these incurable and debilitating conditions. Cell proteome alteration is considered to be one of the main driving forces that triggers neurodegeneration, and unraveling the biological complexity behind the affected molecular pathways constitutes a daunting challenge. This review summarizes the current state on key processes that lead to cellular proteotoxicity in Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis, providing a comprehensive landscape of recent literature. A foundational understanding of how proteotoxicity affects disease etiology and progression may provide essential insight towards potential targets amenable of therapeutic intervention.
Journal Article
Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging
by
Diaz-Carretero, Antonio
,
Villarroya, Francesc
,
Schneider, Jaime L
in
Aging
,
Autophagy
,
Homeostasis
2015
Summary Chaperone-mediated autophagy (CMA), a cellular process that contributes to protein quality control through targeting of a subset of cytosolic proteins to lysosomes for degradation, undergoes a functional decline with age. We have used a mouse model with liver-specific defective CMA to identify changes in proteostasis attributable to reduced CMA activity in this organ with age. We have found that other proteolytic systems compensate for CMA loss in young mice which helps to preserve proteostasis. However, these compensatory responses are not sufficient for protection against proteotoxicity induced by stress (oxidative stress, lipid challenges) or associated with aging. Livers from old mice with CMA blockage exhibit altered protein homeostasis, enhanced susceptibility to oxidative stress and hepatic dysfunction manifested by a diminished ability to metabolize drugs, and a worsening of the metabolic dysregulation identified in young mice. Our study reveals that while the regulatory function of CMA cannot be compensated for in young organisms, its contribution to protein homeostasis can be handled by other proteolytic systems. However, the decline in the compensatory ability identified with age explains the more severe consequences of CMA impairment in older organisms and the contribution of CMA malfunction to the gradual decline in proteostasis and stress resistance observed during aging.
Journal Article
Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders
by
Dubey, Ashish Kant
,
Kumar, Vijay
,
Kim, Jong-Joo
in
cellular stress response
,
ER stress proteotoxicity
,
flavonoids
2021
Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.
Journal Article
Phytoene and Phytoene-Rich Microalgae Extracts Extend Lifespan in C. elegans and Protect against Amyloid-β Toxicity in an Alzheimer’s Disease Model
2024
Phytoene is a colourless carotenoid widely available from dietary sources and a precursor for the synthesis of other carotenoids. Although present at high concentrations across different tissues, phytoene is largely viewed as not having physiological activity. Here, we utilize the model organism C. elegans to show that phytoene is bioactive and has anti-ageing properties. Supplementation with phytoene protects against oxidative damage and amyloid-β42 proteotoxicity (a major pathology of Alzheimer’s disease), and extends lifespan. We also examine extracts from two microalgae, Chlorella sorokiniana and Dunaliella bardawil. We show that the extracts contain high levels of phytoene, and find that these phytoene-rich extracts have protective effects similar to pure phytoene. Our findings show that phytoene is a bioactive molecule with positive effects on ageing and longevity. Our work also suggests that phytoene-rich microalgae extracts can utilized to produce foods or supplements that promote healthy ageing and prevent the development of chronic age-related diseases.
Journal Article
Signal relay in C. elegans: A tissue-perspective on coordinating organismal proteostasis and its impact on aging
2025
As the global demographics shifts towards an increasingly aging population, understanding the effects and molecular mechanisms underlying aging becomes more and more important within biomedical research. A hallmark of aging is the progressive deterioration of protein homeostasis (proteostasis), characterized by the accumulation of misfolded protein aggregates within the cell. The proteostasis network is essential in mitigating the harmful effects of proteotoxic aggregates by activating stress response and degradation pathways. Significant discoveries in aging research are often inherently intertwined with proteostasis, many of which were made using the invertebrate Caenorhabditis elegans. Many longevity pathways, such as the insulin-like signaling pathway, initially identified in C. elegans, are mediated through inter-tissue stress signaling from the nervous system, intestine, or gonad. These cell nonautonomous signaling pathways not only enhance lifespan and stress resilience but also limit age-related accumulation of protein aggregates that exacerbate age-associated diseases. Thus, findings from aging research were often key to providing new insights into cell nonautonomous regulation of stress responses and organismal proteostasis. In this review, we outline key discoveries made using C. elegans as a model system and highlight their contributions that led to our current understanding of inter-tissue communication in organismal proteostasis regulation. We furthermore highlight emerging concepts and discuss the translational relevance of conserved cell nonautonomous proteostasis regulation in mammals. We emphasize the importance of mammalian research to support the research done in C. elegans, with the future goal of developing potential therapeutic interventions targeting these inter-tissue proteostasis signaling pathways to combat aging.
Journal Article
Organismal Protein Homeostasis Mechanisms
2020
Abstract
Sustaining a healthy proteome is a lifelong challenge for each individual cell of an organism. However, protein homeostasis or proteostasis is constantly jeopardized since damaged proteins accumulate under proteotoxic stress that originates from ever-changing metabolic, environmental, and pathological conditions. Proteostasis is achieved via a conserved network of quality control pathways that orchestrate the biogenesis of correctly folded proteins, prevent proteins from misfolding, and remove potentially harmful proteins by selective degradation. Nevertheless, the proteostasis network has a limited capacity and its collapse deteriorates cellular functionality and organismal viability, causing metabolic, oncological, or neurodegenerative disorders. While cell-autonomous quality control mechanisms have been described intensely, recent work on Caenorhabditis elegans has demonstrated the systemic coordination of proteostasis between distinct tissues of an organism. These findings indicate the existence of intricately balanced proteostasis networks important for integration and maintenance of the organismal proteome, opening a new door to define novel therapeutic targets for protein aggregation diseases. Here, we provide an overview of individual protein quality control pathways and the systemic coordination between central proteostatic nodes. We further provide insights into the dynamic regulation of cellular and organismal proteostasis mechanisms that integrate environmental and metabolic changes. The use of C. elegans as a model has pioneered our understanding of conserved quality control mechanisms important to safeguard the organismal proteome in health and disease.
Journal Article
The genetic basis of aneuploidy tolerance in wild yeast
2020
Aneuploidy is highly detrimental during development yet common in cancers and pathogenic fungi – what gives rise to differences in aneuploidy tolerance remains unclear. We previously showed that wild isolates of Saccharomyces cerevisiae tolerate chromosome amplification while laboratory strains used as a model for aneuploid syndromes do not. Here, we mapped the genetic basis to Ssd1, an RNA-binding translational regulator that is functional in wild aneuploids but defective in laboratory strain W303. Loss of SSD1 recapitulates myriad aneuploidy signatures previously taken as eukaryotic responses. We show that aneuploidy tolerance is enabled via a role for Ssd1 in mitochondrial physiology, including binding and regulating nuclear-encoded mitochondrial mRNAs, coupled with a role in mitigating proteostasis stress. Recapitulating ssd1Δ defects with combinatorial drug treatment selectively blocked proliferation of wild-type aneuploids compared to euploids. Our work adds to elegant studies in the sensitized laboratory strain to present a mechanistic understanding of eukaryotic aneuploidy tolerance.
Journal Article