Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
102 result(s) for "pterocarpans"
Sort by:
Prenyl Pterocarpans from Algerian Bituminaria bituminosa and Their Effects on Neuroblastoma
The pterocarpan fraction from aerial parts of Bituminaria bituminosa was investigated for both chemical characterization and biological evaluation. Chemical studies were in accordance with the literature data on Bituminaria genus resulting in the identification of typical 4,8-prenyl pterocarpans. Three new members, bituminarins A–C (1–3), were isolated along with main bitucarpin A (4), erybraedin C (5) and erybraedin D (6) already reported from this plant. Further, biological studies evidenced antiproliferative properties of the most abundant pterocarpans 4 and 5 on neuroblastoma SH-SY5Y cell line, in agreement with previously described antiproliferative activity of these compounds against cancer cell lines other than neuroblastoma. The structure and the stereochemistry of the new molecules was determined by extensive spectroscopic analysis and chemical derivatization methods. The biological investigation was carried out by using an assay platform based on a live-cell imaging system revealing an apoptotic cell death induction.
Endocrine therapy-resistant breast cancer model cells are inhibited by soybean glyceollin I through Eleanor non-coding RNA
Long-term estrogen deprivation (LTED) of an estrogen receptor (ER) α-positive breast cancer cell line recapitulates cancer cells that have acquired estrogen-independent cell proliferation and endocrine therapy resistance. Previously, we have shown that a cluster of non-coding RNAs, Eleanors ( ESR1 locus enhancing and activating non-coding RNAs ) formed RNA cloud and upregulated the ESR1 gene in the nuclei of LTED cells. Eleanors were inhibited by resveratrol through ER. Here we prepared another polyphenol, glyceollin I from stressed soybeans, and identified it as a major inhibitor of the Eleanor RNA cloud and ESR1 mRNA transcription. The inhibition was independent of ER, unlike one by resveratrol. This was consistent with a distinct tertiary structure of glyceollin I for ER binding. Glyceollin I preferentially inhibited the growth of LTED cells and induced apoptosis. Our results suggest that glyceollin I has a novel role in LTED cell inhibition through Eleanors . In other words, LTED cells or endocrine therapy-resistant breast cancer cells may be ready for apoptosis, which can be triggered with polyphenols both in ER-dependent and ER-independent manners.
New Compounds from the Roots of Corsican Calicotome Villosa (Poir.) Link.: Two Pterocarpans and a Dihydrobenzofuran
Three new compounds, a dihydrobenzofuran (coumaran) derivative (compound 1) and two pterocarpans (compounds 2 and 3) were isolated from a root extract of Calicotome villosa growing wild in Corsica. Their structures were elucidated using 1D and 2D NMR spectroscopy and MS/MS as 2-(1-methylethenyl)-5-hydroxy-6-carbomethoxy-2,3-dihydro-benzofuran, 4,9-dihydroxy-3-methoxy-2-dimethylallylpterocarpan, and 4,9-dihydroxy-3′,3′-dimethyl-2,3-pyranopterocarpan.
The Synergistic Effect of Co-Treatment of Methyl Jasmonate and Cyclodextrins on Pterocarpan Production in Sophora flavescens Cell Cultures
Pterocarpans are derivatives of isoflavonoids, found in many species of the family Fabaceae. Sophora flavescens Aiton is a promising traditional Asian medicinal plant. Plant cell suspension cultures represent an excellent source for the production of valuable secondary metabolites. Herein, we found that methyl jasmonate (MJ) elicited the activation of pterocarpan biosynthetic genes in cell suspension cultures of S. flavescens and enhanced the accumulation of pterocarpans, producing mainly trifolirhizin, trifolirhizin malonate, and maackiain. MJ application stimulated the expression of structural genes (PAL, C4H, 4CL, CHS, CHR, CHI, IFS, I3’H, and IFR) of the pterocarpan biosynthetic pathway. In addition, the co-treatment of MJ and methyl-β-cyclodextrin (MeβCD) as a solubilizer exhibited a synergistic effect on the activation of the pterocarpan biosynthetic genes. The maximum level of total pterocarpan production (37.2 mg/g dry weight (DW)) was obtained on day 17 after the application of 50 μM MJ on cells. We also found that the combined treatment of cells for seven days with MJ and MeβCD synergistically induced the pterocarpan production (trifolirhizin, trifolirhizin malonate, and maackiain) in the cells (58 mg/g DW) and culture medium (222.7 mg/L). Noteworthy, the co-treatment only stimulated the elevated extracellular production of maackiain in the culture medium, indicating its extracellular secretion; however, its glycosides (trifolirhizin and trifolirhizin malonate) were not detected in any significant amounts in the culture medium. This work provides new strategies for the pterocarpan production in plant cell suspension cultures, and shows MeβCD to be an effective solubilizer for the extracellular production of maackiain in the cell cultures of S. flavescens.
Maackiain Protects the Kidneys of Type 2 Diabetic Rats via Modulating the Nrf2/HO-1 and TLR4/NF-κB/Caspase-3 Pathways
Type 2 diabetes (T2D) is aglobal health burden that accounts for about 90% of all cases of diabetes. Injury to the kidneys is aserious complication of type 2 diabetes. Maackiain, apterocarpan extracted from roots of has been traditionally used for various disease conditions. However, nothing is known about its possible potential effect on HFD/STZ-T2D-induced nephrotoxicity. In this study, T2D rat model is created by high-fat diet (HFD) for 2 weeks with injection of asingle dose of streptozotocin (35mg/kg body weight). T2D rats were orally administered with maackiain (10 and 20mg/kg body weight) for 7 weeks. Maackiain suppressed T2D-induced alterations in metabolic parameters, lipid profile and kidney functionality markers. By administering 10 and 20mg/kg maackiain to T2D rats, it was able to reduce lipid peroxidation while improving antioxidant levels (SOD, CAT, and GSH). Furthermore, the present study demonstrated the molecular mechanisms through which maackiain attenuated T2D-induced oxidative stress (mRNA: and ; protein: NRF2, NQO-1, HO-1 and NOX-4), inflammation (mRNA: and ; Protein: TLR4, MYD88, NF-κB, IκBα, MCP-1; levels: TNF-α and MCP-1) and apoptosis (mRNA: and ; protein: Bcl-2, Bax, Caspase-3 and Caspase-9) mediated renal injury. Additionally, significant improvement in kidney architecture was observed after treatment of diabetic rats with 10 or 20mg/kg maackiain. Maackiain protects the kidney by decreasing oxidative stress, inflammation, and apoptosis to preserve normal renal function in type 2 diabetes.
Distinct Mechanisms of Biotic and Chemical Elicitors Enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I
Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer activities and is not economical to synthesize. Here, we tested a range of source tissues from soybean, in addition to chemical and biotic elicitors, to understand how to enhance the bioproduction of glyceollin I. Combining the inorganic chemical silver nitrate (AgNO3) with the wall glucan elicitor (WGE) from the soybean pathogen Phytophthora sojae had an additive effect on the elicitation of soybean seeds, resulting in a yield of up to 745.1 µg gt−1 glyceollin I. The additive elicitation suggested that the biotic and chemical elicitors acted largely by separate mechanisms. WGE caused a major accumulation of phytoalexin gene transcripts, whereas AgNO3 inhibited and enhanced the degradation of glyceollin I and 6″-O-malonyldaidzin, respectively.
Medicarpin Protects Cerebral Microvascular Endothelial Cells Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via the PI3K/Akt/FoxO Pathway: A Study of Network Pharmacology Analysis and Experimental Validation
Medicarpin, a pterocarpan class of naturally occurring phytoestrogen possesses various biological functions. However, the effect of medicarpin on oxygen-glucose deprivation-reoxygenation (OGD/R)-induced injury in human cerebral microvascular endothelial cells (HCMECs) remains largely unknown. Target genes of medicarpin were predicted from PharmMapper. Target genes of ischemic stroke were predicted from public databases GeneCards and DisGeNET. Kyoto Encyclopedia of Genes and Genomes pathway enrichment of the intersecting targets was analyzed via DAVID 6.8. Cell viability was evaluated using CCK-8 assay. Malondialdehyde content, superoxide dismutase activity, and glutathione level were detected using corresponding commercially available kits. Cell death was assessed by TUNEL assays. Expression of protein kinase B (Akt), phosphorylated-Akt, forkhead box protein O1, phosphorylated-FoxO1, FoxO3a, and phosphorylated-FoxO3a (p-FoxO3a) was detected by western blot analysis. The intersecting targets of medicarpin and ischemic stroke were significantly enriched in phosphatidylinositol 3-kinase (PI3K)/Akt and FoxO pathways. Medicarpina attenuated OGD/R-evoked viability inhibition, oxidative stress, and cell death in HCMECs. Additionally, medicarpin activated the PI3K/Akt and FoxO pathways in OGD/R-induced HCMECs. Inhibition of PI3K/Akt pathway abrogated the neuroprotective effect of medicarpin on OGD/R-induced injury and activation of FoxO pathway in HCMECs. In conclusion, medicarpin suppressed OGD/R-induced injury in HCMECs by activating PI3K/Akt/FoxO pathway.
The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean
Background Glyceollins are isoflavonoid-derived pathogen-inducible defense metabolites (phytoalexins) from soybean ( Glycine max L. Merr) that have important roles in providing defense against pathogens. They also have impressive anticancer and neuroprotective activities in mammals. Despite their potential usefulness as therapeutics, glyceollins are not economical to synthesize and are biosynthesized only transiently and in low amounts in response to specific stresses. Engineering the regulation of glyceollin biosynthesis may be a promising approach to enhance their bioproduction, yet the transcription factors (TFs) that regulate their biosynthesis have remained elusive. To address this, we first aimed to identify novel abiotic stresses that enhance or suppress the elicitation of glyceollins and then used a comparative transcriptomics approach to search for TF gene candidates that may positively regulate glyceollin biosynthesis. Results Acidity stress (pH 3.0 medium) and dehydration exerted prolonged (week-long) inductive or suppressive effects on glyceollin biosynthesis, respectively. RNA-seq found that all known biosynthetic genes were oppositely regulated by acidity stress and dehydration, but known isoflavonoid TFs were not. Systemic acquired resistance (SAR) genes were highly enriched in the geneset. We chose to functionally characterize the NAC (NAM/ATAF1/2/CUC2)-family TF GmNAC42–1 that was annotated as an SAR gene and a homolog of the Arabidopsis thaliana (Arabidopsis) indole alkaloid phytoalexin regulator ANAC042 . Overexpressing and silencing GmNAC42–1 in elicited soybean hairy roots dramatically enhanced and suppressed the amounts of glyceollin metabolites and biosynthesis gene mRNAs, respectively. Yet, overexpressing GmNAC42–1 in non-elicited hairy roots failed to stimulate the expressions of all biosynthesis genes. Thus, GmNAC42–1 was necessary but not sufficient to activate all biosynthesis genes on its own, suggesting an important role in the glyceollin gene regulatory network (GRN). The GmNAC42–1 protein directly bound the promoters of biosynthesis genes IFS2 and G4DT in the yeast one-hybrid (Y1H) system. Conclusions Acidity stress is a novel elicitor and dehydration is a suppressor of glyceollin biosynthesis. The TF gene GmNAC42–1 is an essential positive regulator of glyceollin biosynthesis. Overexpressing GmNAC42–1 in hairy roots can be used to increase glyceollin yields > 10-fold upon elicitation. Thus, manipulating the expressions of glyceollin TFs is an effective strategy for enhancing the bioproduction of glyceollins in soybean.
An Update on the Effects of Glyceollins on Human Health: Possible Anticancer Effects and Underlying Mechanisms
Biologically active plant-based compounds, commonly referred to as phytochemicals, can influence the expression and function of various receptors and transcription factors or signaling pathways that play vital roles in cellular functions and are then involved in human health and diseases. Thus, phytochemicals may have a great potential to prevent and treat chronic diseases. Glyceollins, a group of phytoalexins that are isolated from soybeans, have attracted attention because they exert numerous effects on human functions and diseases, notably anticancer effects. In this review, we have presented an update on the effects of glyceollins in relation to their potential beneficial roles in human health. Despite a growing number of studies suggesting that this new family of phytochemicals can be involved in critical cellular pathways, such as estrogen receptor, protein kinase, and lipid kinase signaling pathways, future investigations will be needed to better understand their molecular mechanisms and their specific significance in biomedical applications.
Structural Basis for Dual Functionality of Isoflavonoid O -Methyltransferases in the Evolution of Plant Defense Responses
In leguminous plants such as pea (Pisum sativum), alfalfa (Medicago sativa), barrel medic (Medicago truncatula), and chickpea (Cicer arietinum), 4'-O-methylation of isoflavonoid natural products occurs early in the biosynthesis of defense chemicals known as phytoalexins. However, among these four species, only pea catalyzes 3-O-methylation that converts the pterocarpanoid isoflavonoid 6a-hydroxymaackiain to pisatin. In pea, pisatin is important for chemical resistance to the pathogenic fungus Nectria hematococca. While barrel medic does not biosynthesize 6a-hydroxymaackiain, when cell suspension cultures are fed 6a-hydroxymaackiain, they accumulate pisatin. In vitro, hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) from barrel medic exhibits nearly identical steady state kinetic parameters for the 4'-O-methylation of the isoflavonoid intermediate 2,7,4'-trihydroxyisoflavanone and for the 3-O-methylation of the 6a-hydroxymaackiain isoflavonoid-derived pterocarpanoid intermediate found in pea. Protein x-ray crystal structures of HI4'OMT substrate complexes revealed identically bound conformations for the 2S,3R-stereoisomer of 2,7,4'-trihydroxyisoflavanone and the 6aR,11aR-stereoisomer of 6a-hydroxymaackiain. These results suggest how similar conformations intrinsic to seemingly distinct chemical substrates allowed leguminous plants to use homologous enzymes for two different biosynthetic reactions. The three-dimensional similarity of natural small molecules represents one explanation for how plants may rapidly recruit enzymes for new biosynthetic reactions in response to changing physiological and ecological pressures.