Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
665 result(s) for "purebreds"
Sort by:
Purebred and Crossbred Genomic Evaluation and Mate Allocation Strategies To Exploit Dominance in Pig Crossbreeding Schemes
We investigated the effectiveness of mate allocation strategies accounting for non-additive genetic effects to improve crossbred performance in a two-way crossbreeding scheme. We did this by computer simulation of 10 generations of evaluation and selection. QTL effects were simulated as correlated across purebreds and crossbreds, and (positive) heterosis was simulated as directional dominance. The purebred-crossbred correlation was 0.30 or 0.68 depending on the genetic variance component used. Dominance and additive marker effects were estimated simultaneously for purebreds and crossbreds by multiple trait genomic BLUP. Four scenarios that differ in the sources of information (only purebred data, or purebred and crossbred data) and mate allocation strategies (mating at random, minimizing expected future inbreeding, or maximizing the expected total genetic value of crossbred animals) were evaluated under different cases of genetic variance components. Selecting purebred animals for purebred performance yielded a response of 0.2 genetic standard deviations of the trait “crossbred performance” per generation, whereas selecting purebred animals for crossbred performance doubled the genetic response. Mate allocation strategy to maximize the expected total genetic value of crossbred descendants resulted in a slight increase (0.8%, 4% and 0.5% depending on the genetic variance components) of the crossbred performance. Purebred populations increased homozygosity, but the heterozygosity of the crossbreds remained constant. When purebred-crossbred genetic correlation is low, selecting purebred animals for crossbred performance using crossbred information is a more efficient strategy to exploit heterosis and increase performance at the crossbred commercial level, whereas mate allocation did not improve crossbred performance.
Age-related analysis of the gut microbiome in a purebred dog colony
ABSTRACT Dogs are model animals that can be used to study the gut microbiome. Although the gut microbiome is assumed to be closely related to aging, information pertaining to this relationship in dogs is limited. Here, we examined the association between the canine gut microbiome and age via a bacterial 16S rRNA gene amplicon sequence analysis in a colony of 43 Japanese purebred Shiba Inu dogs. We found that microbial diversity tended to decrease with aging. A differential abundance analysis showed an association of a single specific microbe with aging. The age-related coabundance network analysis showed that two microbial network modules were positively and negatively associated with aging, respectively. These results suggest that the dog gut microbiome is likely to vary with aging. Gut microbiome analysis in a Shiba Inu purebred dog colony shows age-related transition of not only microbial diversity, a specific microbe, but also modules of a microbial coabundance network.
One Hundred Years of Coat Colour Influences on Genetic Diversity in the Process of Development of a Composite Horse Breed
Genetic diversity and demographic parameters were computed to evaluate the historic effects of coat colour segregation in the process of configuration of the Hispano-Arabian horse (Há). Pedigree records from 207,100 individuals born between 1884 and 2019 were used. Although coat colour is not a determinant for the admission of Hispano-Arabian individuals as apt for breeding, it may provide a representative visual insight into the gene contribution of Spanish Purebred horses (PRE), given many of the dilution genes described in Há are not present in the Arabian Purebred breed (PRá). The lack of consideration of coat colour inheritance patterns by the entities in charge of individual registration and the dodging behaviour of breeders towards the historic banning policies, may have acted as a buffer for diversity loss (lower than 8%). Inbreeding levels ranged from 1.81% in smokey cream horses to 8.80 for white horses. Contextually, crossbred breeding may increase the likelihood for double dilute combinations to occur as denoted by the increased number of Há horses displaying Pearl coats (53 Há against 3 PRE and 0 PRá). Bans against certain coat colours and patterns may have prevented an appropriate registration of genealogical information from the 4th generation onwards for decades. This may have brought about the elongation of generation intervals. Breeder tastes may have returned to the formerly officially-recognised coat colours (Grey and Bay) and Chestnut/Sorrel. However, coat colour conditioning effects must be evaluated timely for relatively short specific periods, as these may describe cyclic patterns already described in owners’ and breeders’ tastes over the centuries.
Genetic parameters and purebred–crossbred genetic correlations for growth, meat quality, and carcass traits in pigs
Abstract Growth, meat quality, and carcass traits are of economic importance in swine breeding. Understanding their genetic basis in purebred (PB) and commercial crossbred (CB) pigs is necessary for a successful breeding program because, although the breeding goal is to improve CB performance, phenotype collection and selection are usually carried out in PB populations housed in biosecure nucleus herds. Thus, the selection is indirect, and the accuracy of selection depends on the genetic correlation between PB and CB performance (rpc). The objectives of this study were to 1) estimate genetic parameters for growth, meat quality, and carcass traits in a PB sire line and related commercial CB pigs and 2) estimate the corresponding genetic correlations between purebred and crossbred performance (rpc). Both objectives were investigated by using pedigree information only (PBLUP) and by combining pedigree and genomic information in a single-step genomic BLUP (ssGBLUP) procedure. Growth rate showed moderate estimates of heritability for both PB and CB based on PBLUP, while estimates were higher in CB based on ssGBLUP. Heritability estimates for meat quality traits were diverse and slightly different based on PB and CB data with both methods. Carcass traits had higher heritability estimates based on PB compared with CB data based on PBLUP and slightly higher estimates for CB data based on ssGBLUP. A wide range of estimates of genetic correlations were obtained among traits within the PB and CB data. In the PB population, estimates of heritabilities and genetic correlations were similar based on PBLUP and ssGBLUP for all traits, while based on the CB data, ssGBLUP resulted in different estimates of genetic parameters with lower SEs. With some exceptions, estimates of rpc were moderate to high. The SE on the rpc estimates was generally large when based on PBLUP due to limited sample size, especially for CBs. In contrast, estimates of rpc based on ssGBLUP were not only more precise but also more consistent among pairs of traits, considering their genetic correlations within the PB and CB data. The wide range of estimates of rpc (less than 0.70 for 7 out of 13 traits) indicates that the use of CB phenotypes recorded on commercial farms, along with genomic information, for selection in the PB population has potential to increase the genetic progress of CB performance.
Evaluation of reciprocal F1 crosses of Fayoumi with two exotic chicken breeds 1: additive and non-additive effects on egg production traits
The present study estimates additive and non-additive effects on egg production traits in genotypes generated through pure mating and reciprocal crossing of Fayoumi (FM) with Koekoek (KK) and White Leghorn (WL). Age at first egg (AFE) and body weight at first egg (BWAFE) were determined when the first bird in the pen laid its first egg, and egg weight at first egg (EWAFE) was the average weight of eggs laid consecutively during the first 10 days. Egg number (EN) and egg weight (EW) were recorded daily from AFE to 40 weeks of age. Egg mass (EM) was the product of EN and EW. EN of hens initially housed and hens alive during the experiment were used to calculate hen-housed egg production (HHEP) and hen-day egg production (HDEP), respectively. All the traits showed statistically significant differences among the genotypes. The results revealed the importance of additive and non-additive effects, where purebred effect (PE), general combining ability (GCA), maternal effect (ME), specific combining ability (SCA), and residual reciprocal effect (RRE) significantly affected most of the traits. The KK and WL had a higher PE, and GCA was highest in KK, with FM and WL showing a higher ME. The FM x WL had higher SCA and RRE. The KK x FM and FM x WL outperformed their main and reciprocal crosses, respectively, and purebred contemporaries. Therefore, a synthetic breeding program involving KK as a sire and FM, WL, FM x WL, and KK x FM as a dam would be feasible.
Estimation of breed effects and non-additive genetic variation for ostrich slaughter and skin traits
The study quantified breed effects and putative non-additive genetic variation for quantitative and qualitative slaughter and skin traits involving three ostrich breeds: South African Black (SAB), Zimbabwean Blue (ZB), and Kenyan Red (KR) ostriches. Such data from contemporary slaughter groups with all three pure breeds represented were analyzed together (SAB: n = 457; ZB: n = 74; KR: n = 50). Two 2 × 2 diallel crossbreeding designs were used to assess crosses of ZB and KR birds with the SAB strain. Subsequently, the data from SAB, ZB and their reciprocal crosses, slaughtered together; as well as the data from SAB and KR ostriches, along with their reciprocal crosses, respectively, were analyzed separately. ZB and KR birds outperformed SAB birds for most size-related slaughter and skin traits. Linear contrasts were used to distinguish the effects of breed, heterosis, and the dam line. For the ZB x SAB design, additive breed effects were significant for slaughter weight (10.4%), crust skin size (3.9%) and nodule shape score (1.6%) (all P < 0.05). Significant heterosis were found for slaughter weight (4.3%), crust skin size (1.7%) and nodule size score (3.7%) (P < 0.05). Dam line effects were observed for skin weight (4.1%) and hair follicle score (4.1%). In the KR x SAB design, additive breed effects were like outcomes for the ZB x SAB design. Heterosis estimates were significant (P < 0.05) for slaughter weight (5.8%), crust skin size (2.9%), crown length (1.7%) and nodule size score (4.4%). Dam line effects were significant for slaughter weight (3.7%) and nodule size score (3.8%). In conclusion, ZB and KR birds outperformed their SAB contemporaries for size and size-related traits. Crossbreeding with these genotypes could improve some size-related traits over the mid-parent value of purebreds.
Body size, inbreeding, and lifespan in domestic dogs
Inbreeding poses a real or potential threat to nearly every species of conservation concern. Inbreeding leads to loss of diversity at the individual level, which can cause inbreeding depression, and at the population level, which can hinder ability to respond to a changing environment. In closed populations such as endangered species and ex situ breeding programs, some degree of inbreeding is inevitable. It is therefore vital to understand how different patterns of breeding and inbreeding can affect fitness in real animals. Domestic dogs provide an excellent model, showing dramatic variation in degree of inbreeding and in lifespan, an important aspect of fitness that is known to be impacted by inbreeding in other species. There is a strong negative correlation between body size and lifespan in dogs, but it is unknown whether the higher rate of aging in large dogs is due to body size per se or some other factor associated with large size. We used dense genome-wide SNP array data to calculate average inbreeding for over 100 dog breeds based on autozygous segment length and found that large breeds tend to have higher coefficients of inbreeding than small breeds. We then used data from the Veterinary medical Database and other published sources to estimate life expectancies for pure and mixed breed dogs. When controlling for size, variation in inbreeding was not associated with life expectancy across breeds. When comparing mixed versus purebred dogs, however, mixed breed dogs lived about 1.2 years longer on average than size-matched purebred dogs. Furthermore, individual pedigree coefficients of inbreeding and lifespans for over 9000 golden retrievers showed that inbreeding does negatively impact lifespan at the individual level. Registration data from the American Kennel Club suggest that the molecular inbreeding patterns observed in purebred dogs result from specific breeding practices and/or founder effects and not the current population size. Our results suggest that recent inbreeding, as reflected in variation within a breed, is more likely to affect fitness than historic inbreeding, as reflected in variation among breeds. Our results also indicate that occasional outcrosses, as in mixed breed dogs, can have a substantial positive effect on fitness.
Sensorineural deafness in purebred white Devon Rex cats
Background Data regarding congenital sensorineural deafness (CSD) in client‐owned, white Devon Rex cats is limited because most of the information on this disease comes from experiments on mixed‐breed cats. Objectives Provide data on the occurrence of CSD in a population of client‐owned purebred white Devon Rex cats. Animals Forty client‐owned, purebred, white Devon Rex cats examined at 2 different facilities. Median age of the examined cats was 19 weeks. Methods Hearing status was defined by use of brainstem auditory evoked responses. Results The occurrence of sensorineural deafness in the studied population of Devon Rex cats was estimated at 10%. Unilateral and bilateral deafness occurred equally often, with 2 individuals having each (ie, 5.0%). No association between the occurrence of CSD and sex could be found, χ2 (1, n = 40) = 0.001 (P > .99). No association between blue irises and deafness was noted in the studied population, χ2 (1, n = 40) < 0.01 (P > .99). Conclusions The occurrence of CSD in a population of client‐owned, white Devon Rex cats was found to be lower compared with data obtained in previously conducted studies of deafness in purebred cats. In the studied population of Devon Rex cats, no association between blue irises and CSD was found.
Comparison of models for missing pedigree in single-step genomic prediction
Abstract Pedigree information is often missing for some animals in a breeding program. Unknown-parent groups (UPGs) are assigned to the missing parents to avoid biased genetic evaluations. Although the use of UPGs is well established for the pedigree model, it is unclear how UPGs are integrated into the inverse of the unified relationship matrix (H-inverse) required for single-step genomic best linear unbiased prediction. A generalization of the UPG model is the metafounder (MF) model. The objectives of this study were to derive 3 H-inverses and to compare genetic trends among models with UPG and MF H-inverses using a simulated purebred population. All inverses were derived using the joint density function of the random breeding values and genetic groups. The breeding values of genotyped animals (u2) were assumed to be adjusted for UPG effects (g) using matrix Q2 as u2∗=u2+Q2g before incorporating genomic information. The Quaas–Pollak-transformed (QP) H-inverse was derived using a joint density function of u2∗ and g updated with genomic information and assuming nonzero cov(u2∗,g′). The modified QP (altered) H-inverse also assumes that the genomic information updates u2∗ and g, but cov(u2∗,g′)=0. The UPG-encapsulated (EUPG) H-inverse assumed genomic information updates the distribution of u2∗. The EUPG H-inverse had the same structure as the MF H-inverse. Fifty percent of the genotyped females in the simulation had a missing dam, and missing parents were replaced with UPGs by generation. The simulation study indicated that u2∗ and g in models using the QP and altered H-inverses may be inseparable leading to potential biases in genetic trends. Models using the EUPG and MF H-inverses showed no genetic trend biases. These 2 H-inverses yielded the same genomic EBV (GEBV). The predictive ability and inflation of GEBVs from young genotyped animals were nearly identical among models using the QP, altered, EUPG, and MF H-inverses. Although the choice of H-inverse in real applications with enough data may not result in biased genetic trends, the EUPG and MF H-inverses are to be preferred because of theoretical justification and possibility to reduce biases.
Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data
The main objective of the current research was to locate, annotate, and highlight specific areas of the bovine genome that are undergoing intense positive selection. Here, we are analyzing selection signatures in crossbred (Bos taurus X Bos indicus), taurine (Bos taurus), and indicine (Bos indicus) cattle breeds. Indicine cattle breeds found throughout India are known for their higher heat tolerance and disease resilience. More breeds and more methods can provide a better understanding of the selection signature. So, we have worked on nine distinct cattle breeds utilizing seven different summary statistics, which is a fairly extensive approach. In this study, we carried out a thorough genome-wide investigation of selection signatures using bovine 50K SNP data. We have included the genotyped data of two taurine, two crossbreds, and five indicine cattle breeds, for a total of 320 animals. During the 1950s, these indicine (cebuine) cattle breeds were exported with the aim of enhancing the resilience of taurine breeds in Western countries. For this study, we employed seven summary statistics, including intra-population, i.e., Tajima’s D, CLR, iHS, and ROH and inter-population statistics, i.e., FST, XP-EHH, and Rsb. The NCBI database, PANTHER 17.0, and CattleQTL database were used for annotation after finding the important areas under selection. Some genes, including EPHA6, CTNNA2, NPFFR2, HS6ST3, NPR3, KCNIP4, LIPK, SDCBP, CYP7A1, NSMAF, UBXN2B, UGDH, UBE2K, and DAB1, were shown to be shared by three or more different approaches. Therefore, it gives evidence of the most intense selection in these areas. These genes are mostly linked to milk production and adaptability traits. This study also reveals selection regions that contain genes which are crucial to numerous biological functions, including those associated with milk production, coat color, glucose metabolism, oxidative stress response, immunity and circadian rhythms.