Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,602 result(s) for "quantum sensing"
Sort by:
Direct moment estimation of intensity distribution of magnetic fields with quantum sensing network
A quantum sensing network is used to simultaneously detect and measure physical quantities, such as magnetic fields, at different locations. However, there is a risk that the measurement data is leaked to the third party during the communication. Many theoretical and experimental efforts have been made to realize a secure quantum sensing network where a high level of security is guaranteed. In this paper, we propose a protocol to estimate statistical quantities of the target fields at different places without knowing individual value of the target fields. We generate an entanglement between L quantum sensors, let the quantum sensor interact with local fields, and perform specific measurements on them. By calculating the quantum Fisher information to estimate the individual value of the magnetic fields, we show that we cannot obtain any information of the value of the individual fields in the limit of large L . On the other hand, in our protocol, we can estimate theoretically any moment of the field distribution by measuring a specific observable and evaluated relative uncertainty of k th ( k = 1 , 2 , 3 , 4 ) order moment. Our results are a significant step towards using a quantum sensing network with security inbuilt.
A magnon scattering platform
Scattering experiments have revolutionized our understanding of nature. Examples include the discovery of the nucleus [R. G. Newton, Scattering Theory of Waves and Particles (1982)], crystallography [U. Pietsch, V. Holý, T. Baumback, High-Resolution X-Ray Scattering (2004)], and the discovery of the double-helix structure of DNA [J. D. Watson, F. H. C. Crick, Nature 171, 737–738]. Scattering techniques differ by the type of particles used, the interaction these particles have with target materials, and the range of wavelengths used. Here, we demonstrate a two-dimensional table-top scattering platform for exploring magnetic properties of materials on mesoscopic length scales. Long-lived, coherent magnonic excitations are generated in a thin film of yttrium iron garnet and scattered off a magnetic target deposited on its surface. The scattered waves are then recorded using a scanning nitrogen vacancy center magnetometer that allows subwavelength imaging and operation under conditions ranging from cryogenic to ambient environment. While most scattering platforms measure only the intensity of the scattered waves, our imaging method allows for spatial determination of both amplitude and phase of the scattered waves, thereby allowing for a systematic reconstruction of the target scattering potential. Our experimental results are consistent with theoretical predictions for such a geometry and reveal several unusual features of the magnetic response of the target, including suppression near the target edges and a gradient in the direction perpendicular to the direction of surface wave propagation. Our results establish magnon scattering experiments as a platform for studying correlated many-body systems.
Quantum Sensing Can Already Make a Difference. But Where?
Quantum sensing technology is already providing value and potential use cases can shape multiple industries. There are four core technologies with promising applications - solid state spins, neutral atoms, superconducting circuits, and trapped ions - which have sensing capabilities across a broad range of physical properties, including magnetic fields, electric fields, rotation, temperature, gravity, time, and pressure. Which quantum sensing technology and implementation type to use depends on the use case, as they measure different properties and are best suited to specific environments. This paper discusses the potential and current applications of the abovementioned quantum sensing technologies through varied use-case studies. They are presented around four specific industries and along different time horizons, emphasizing the need for further development and enhancement that can be achieved over the conventional counterparts. The full power of quantum sensors is not yet known, but they have the potential to create an entire new ecosystem if researchers, start-ups, and industry leaders work together to explore their applications and get them out of the lab. Here, the paper outlines necessary actions and possible avenues for the stakeholders to realize this potential across academia and industry.
Quantum Science and Quantum Technology
Quantum science and quantum technology are of great current interest in multiple frontiers of many scientific fields ranging from computer science to physics and chemistry, and from engineering to mathematics and statistics. Their developments will likely lead to a new wave of scientific revolutions and technological innovations in a wide range of scientific studies and applications. This paper provides a brief review on quantum communication, quantum information, quantum computation, quantum simulation, and quantum metrology. We present essential quantum properties, illustrate relevant concepts of quantum science and quantum technology, and discuss their scientific developments. We point out the need for statistical analysis in their developments, as well as their potential applications to and impacts on statistics and data science.
The quantum technologies roadmap: a European community view
Within the last two decades, quantum technologies (QT) have made tremendous progress, moving from Nobel Prize award-winning experiments on quantum physics (1997: Chu, Cohen-Tanoudji, Phillips; 2001: Cornell, Ketterle, Wieman; 2005: Hall, Hänsch-, Glauber; 2012: Haroche, Wineland) into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: quantum communication, where individual or entangled photons are used to transmit data in a provably secure way; quantum simulation, where well-controlled quantum systems are used to reproduce the behaviour of other, less accessible quantum systems; quantum computation, which employs quantum effects to dramatically speed up certain calculations, such as number factoring; and quantum sensing and metrology, where the high sensitivity of coherent quantum systems to external perturbations is exploited to enhance the performance of measurements of physical quantities. In Europe, the QT community has profited from several EC funded coordination projects, which, among other things, have coordinated the creation of a 150-page QT Roadmap (http://qurope.eu/h2020/qtflagship/roadmap2016). This article presents an updated summary of this roadmap.
Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe
Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device in the best way possible, has evolved into one of the cornerstones for enabling quantum technologies. The last few years have seen a rapid evolution and expansion of the field. We review here recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies. We also address key challenges and sketch a roadmap for future developments.
2022 Roadmap on integrated quantum photonics
Integrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering.
Variational-state quantum metrology
Quantum technologies exploit entanglement to enhance various tasks beyond their classical limits including computation, communication and measurements. Quantum metrology aims to increase the precision of a measured quantity that is estimated in the presence of statistical errors using entangled quantum states. We present a novel approach for finding (near) optimal states for metrology in the presence of noise, using variational techniques as a tool for efficiently searching the high-dimensional space of quantum states, which would be classically intractable. We comprehensively explore systems consisting of up to 9 qubits and find new highly entangled states that are not symmetric under permutations and non-trivially outperform previously known states up to a constant factor 2. We consider a range of environmental noise models; while passive quantum states cannot achieve a fundamentally superior scaling (as established by prior asymptotic results) we do observe a significant absolute quantum advantage. We finally outline a possible experimental setup for variational quantum metrology which can be implemented in near-term hardware.
Detecting single gravitons with quantum sensing
The quantization of gravity is widely believed to result in gravitons – particles of discrete energy that form gravitational waves. But their detection has so far been considered impossible. Here we show that signatures of single graviton exchange can be observed in laboratory experiments. We show that stimulated and spontaneous single-graviton processes can become relevant for massive quantum acoustic resonators and that stimulated absorption can be resolved through continuous sensing of quantum jumps. We analyze the feasibility of observing the exchange of single energy quanta between matter and gravitational waves. Our results show that single graviton signatures are within reach of experiments. In analogy to the discovery of the photo-electric effect for photons, such signatures can provide the first experimental clue of the quantization of gravity. While it has been suggested that low- energy experiments might allow to find evidence for quantization of gravity, direct detection of single gravitons has normally been considered a hopeless task. Here, the authors suggest that a massive body cooled to the ground state in a gravitational wave background should display detectable stimulated single graviton transitions.
Origins of Diamond Surface Noise Probed by Correlating Single-Spin Measurements with Surface Spectroscopy
The nitrogen-vacancy (NV) center in diamond exhibits spin-dependent fluorescence and long spin coherence times under ambient conditions, enabling applications in quantum information processing and sensing. NV centers near the surface can have strong interactions with external materials and spins, enabling new forms of nanoscale spectroscopy. However, NV spin coherence degrades within 100 nm of the surface, suggesting that diamond surfaces are plagued with ubiquitous defects. Prior work on characterizing near-surface noise has primarily relied on using NV centers themselves as probes; while this has the advantage of exquisite sensitivity, it provides only indirect information about the origin of the noise. Here we demonstrate that surface spectroscopy methods and single-spin measurements can be used as complementary diagnostics to understand sources of noise. We find that surface morphology is crucial for realizing reproducible chemical termination, and use this insight to achieve a highly ordered, oxygen-terminated surface with suppressed noise. We observe NV centers within 10 nm of the surface with coherence times extended by an order of magnitude.