Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
35,355 result(s) for "quartz"
Sort by:
Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles
Inhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive. Here, we have identified a unique subfamily of silanols as the major determinant of silica particle toxicity. This population of “nearly free silanols” (NFS) appears on the surface of quartz particles upon fracture and can be modulated by thermal treatments. Density functional theory calculations indicates that NFS locate at an intersilanol distance of 4.00 to 6.00 Å and form weak mutual interactions. Thus, NFS could act as an energetically favorable moiety at the surface of silica for establishing interactions with cell membrane components to initiate toxicity. With ad hoc prepared model quartz particles enriched or depleted in NFS, we demonstrate that NFS drive toxicity, including membranolysis, in vitro proinflammatory activity, and lung inflammation. The toxic activity of NFS is confirmed with pyrogenic and vitreous amorphous silica particles, and industrial quartz samples with noncontrolled surfaces. Our results identify the missing key molecular moieties of the silica surface that initiate interactions with cell membranes, leading to pathological outcomes. NFS may explain other important interfacial processes involving silica particles.
Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air
Conventional SO 2 scrubbing agents, namely calcium oxide and zeolites, are often used to remove SO 2 using a strong or irreversible adsorption-based process. However, adsorbents capable of sensing and selectively capturing this toxic molecule in a reversible manner, with in-depth understanding of structure–property relationships, have been rarely explored. Here we report the selective removal and sensing of SO 2 using recently unveiled fluorinated metal–organic frameworks (MOFs). Mixed gas adsorption experiments were performed at low concentrations ranging from 250 p.p.m. to 7% of SO 2 . Direct mixed gas column breakthrough and/or column desorption experiments revealed an unprecedented SO 2 affinity for KAUST-7 (NbOFFIVE-1-Ni) and KAUST-8 (AlFFIVE-1-Ni) MOFs. Furthermore, MOF-coated quartz crystal microbalance transducers were used to develop sensors with the ability to detect SO 2 at low concentrations ranging from 25 to 500 p.p.m. Removal of SO 2 from flue gas is of prime importance to avoid its poisoning of CO 2 -seperating agents. Here, the authors demonstrate that two fluorinated metal–organic frameworks selectively remove SO 2 from synthetic flue gas and can sense SO 2 with p.p.m.-level detection using quartz crystal microbalance transducers.
Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO)
Understanding the local electrochemical processes is of key importance for efficient energy storage applications, including electrochemical double layer capacitors. In this work, we studied the charge storage mechanism of a model material - reduced graphene oxide (rGO) - in aqueous electrolyte using the combination of cavity micro-electrode, operando electrochemical quartz crystal microbalance (EQCM) and operando electrochemical dilatometry (ECD) tools. We evidence two regions with different charge storage mechanisms, depending on the cation-carbon interaction. Notably, under high cathodic polarization (region II), we report an important capacitance increase in Zn 2+ containing electrolyte with minimum volume expansion, which is associated with Zn 2+ desolvation resulting from strong electrostatic Zn 2+ -rGO interactions. These results highlight the significant role of ion-electrode interaction strength and cation desolvation in modulating the charging mechanisms, offering potential pathways for optimized capacitive energy storage. As a broader perspective, understanding confined electrochemical systems and the coupling between chemical, electrochemical and transport processes in confinement may open tremendous opportunities for energy, catalysis or water treatment applications in the future. Understanding local electrochemical processes can help improve electrochemical energy storage. Here, the authors report a charge storage mechanism in aqueous electrolyte for reduced graphene oxide using an electrochemical quartz crystal microbalance.
Effective antibodies immobilization and functionalized nanoparticles in a quartz-crystal microbalance-based immunosensor for the detection of parathion
Biosensor-based detection provides a rapid and low-cost alternative to conventional analytical methods for revealing the presence of the contaminants in water as well as solid matrices. Although important to be detected, small analytes (few hundreds of Daltons) are an issue in biosensing since the signal they induce in the transducer, and specifically in a Quartz-Crystal Microbalance, is undetectable. A pesticide like parathion (M = 292 Da) is a typical example of contaminant for which a signal amplification procedure is desirable. The ballasting of the analyte by gold nanoparticles has been already applied to heavy target as proteins or bacteria to improve the limit of detection. In this paper, we extend the application of such a method to small analytes by showing that once the working surface of a Quartz-Crystal Microbalance (QCM) has been properly functionalized, a limit of detection lower than 1 ppb is reached for parathion. The effective surface functionalization is achieved by immobilizing antibodies upright oriented on the QCM gold surface by a simple photochemical technique (Photonic Immobilization Technique, PIT) based on the UV irradiation of the antibodies, whereas a simple protocol provided by the manufacturer is applied to functionalize the gold nanoparticles. Thus, in a non-competitive approach, the small analyte is made detectable by weighing it down through a \"sandwich protocol\" with a second antibody tethered to heavy gold nanoparticles. The immunosensor has been proved to be effective against the parathion while showing no cross reaction when a mixture of compounds very similar to parathion is analyzed. The immunosensor described in this paper can be easily applied to any small molecule for which polyclonal antibodies are available since both the functionalization procedure of the QCM probe surface and gold nanoparticle can be applied to any IgG, thereby making our device of general application in terms of target analyte.
Issue Information
Cover Legend Quartz field covered with the miniature succulent Argyroderma fissum (Haw.) L.Bol., Knersvlakte, South Africa. Courtesy of Florian Boucher (Boucher et al. pp. 24-31).
Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications
Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor’s fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications.
Nanoscale Plastic Wear of α‐Quartz Asperities During Shear Sliding: Insights From Molecular Dynamics Simulations
Fault slip inevitably causes the multiscale wear damage of asperities, ranging from nanometers to meters. However, the nanoscale asperity wear mechanism remains poorly understood. While plastic wear has been inferred as one of the dominant wear modes, the dynamic wear mechanism of plastic wear has not been thoroughly investigated. Here, we explicitly present a series of nanoscale 3‐D plastic wear processes of α‐quartz asperities by using molecular dynamics method, where asperity climbing mode dominates during the sliding. We identify a transition from atom‐by‐atom wear damage to layer removal of α‐quartz asperities with increasing normal forces. Moreover, nanoscale wear volume evolution depends on the normal force and loading velocity and shows sublinear increase with loading distance. We confirm that the tangential shear work can well predict the nanoscale plastic wear volume under various loading conditions due to the proportional relation.
A Review of Quartz Crystal Microbalance for Chemical and Biological Sensing Applications
Humans are fundamentally interested in monitoring and understanding interactions that occur in and around our bodies. Biological interactions within the body determine our physical condition and can be used to improve medical treatments and develop new drugs. Daily life involves contact with numerous chemicals, ranging from household elements, naturally occurring scents from common plants and animals, and industrial agents. Many chemicals cause adverse health and environmental effects and require regulation to prevent pollution. Chemical detection is critically important for food and environmental quality control efforts, medical diagnostics, and detection of explosives. Thus, sensitive devices are needed for detecting and discriminating chemical and biological samples. Compared to other sensing devices, the Quartz Crystal Microbalance (QCM) is well-established and has been considered and sufficiently sensitive for detecting molecules, chemicals, polymers, and biological assemblies. Due to its simplicity and low cost, the QCM sensor has potential applications in analytical chemistry, surface chemistry, biochemistry, environmental science, and other disciplines. QCM detection measures resonate frequency changes generated by the quartz crystal sensor when covered with a thin film or liquid. The quartz crystal is sandwiched between two metal (typically gold) electrodes. Functionalizing the electrode’s surface further enhances frequency change detection through to interactions between the sensor and the targeted material. These sensors are sensitive to high frequencies and can recognize ultrasmall masses. This review will cover advancements in QCM sensor technologies, highlighting in-sensor and real-time analysis. QCM-based sensor function is dictated by the coating material. We present various high-sensitivity coating techniques that use this novel sensor design. Then, we briefly review available measurement parameters and technological interventions that will inform future QCM research. Lastly, we examine QCM’s theory and application to enhance our understanding of relevant electrical components and concepts.
The Interaction between Anesthetic Isoflurane and Model-Biomembrane Monolayer Using Simultaneous Quartz Crystal Microbalance (QCM) and Quartz Crystal Impedance (QCI) Methods
The interaction between anesthetic Isoflurane (Iso) and model-biomembrane on the water surface has been investigated using quartz crystal microbalance (QCM) and quartz crystal impedance (QCI) methods. The model-biomembranes used were dipalmitoyl phosphatidyl choline (DPPC), DPPC-palmitic acid (PA) mixture (DPPC:PA = 8:2), DPPC-Alamethicin (Al) mixture (DPPC:Al = 39:1), and DPPC-β-Lactoglobulin (βLG) mixture (DPPC:βLG = 139:1) monolayers, respectively. The quartz crystal oscillator (QCO) was attached horizontally to each monolayer, and QCM and QCI measurements were performed simultaneously. It was found that Iso hydrate physisorbed on each monolayer/water interface from QCM and changed those interfacial viscosities from QCI. With an increase in Iso concentration, pure DPPC, DPPC-PA mixed, and DPPC-Al mixed monolayers showed a two-step process of Iso hydrate on both physisorption and viscosity, whereas it was a one-step for the DPPC-βLG mixed monolayer. The viscosity change in the DPPC-βLG mixed monolayer with the physisorption of Iso hydrate was much larger than that of other monolayers, in spite of the one-step process. From these results, the action mechanism of anesthetics and their relevance to the expression of anesthesia were discussed, based on the “release of interfacial hydrated water” hypothesis on the membrane/water interface.