Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
83 result(s) for "random error filtering"
Sort by:
Error Separation Method for Geometric Distribution Error Modeling of Precision Machining Surfaces Based on K-Space Spectrum
The geometric error distributed on components’ contact surfaces is a critical factor affecting assembly accuracy and precision instrument stability. Effective error separation methods can improve model accuracy, thereby aiding in performance prediction and process optimization. Here, an error separation method for geometric distribution error modeling for precision machining surfaces based on the K-space spectrum is proposed. To determine the boundary of systematical error and random error, we used a cruciform boundary line method based on the K-space spectrum, achieving the optimal separation of the two with frequency difference. The effectiveness of the method was experimentally verified using two sets of machined surfaces. By comparing with current common random error filtering methods, the outstanding role of the proposed error separation method in separating random error and preserving processing features has been verified.
Research on Kinematic and Static Filtering of the ESKF Based on INS/GNSS/UWB
With the widespread development of multiple sensors for UGVs, the multi-source fusion-navigation system, which overcomes the limitations of the use of a single sensor, is becoming increasingly important in the field of autonomous navigation for UGVs. Because federated filtering is not independent between the filter-output quantities, owing to the use of the same state equation in each of the local sensors, a new kinematic and static multi-source fusion-filtering algorithm based on the error-state Kalman filter (ESKF) is proposed in this paper for the positioning-state estimation of UGVs. The algorithm is based on INS/GNSS/UWB multi-source sensors, and the ESKF replaces the traditional Kalman filter in kinematic and static filtering. After constructing the kinematic EKSF based on GNSS/INS and the static ESKF based on UWB/INS, the error-state vector solved by the kinematic ESKF was injected and set to zero. On this basis, the kinematic ESKF filter solution was used as the state vector of the static ESKF for the rest of the static filtering in a sequential form. Finally, the last static ESKF filtering solution was used as the integral filtering solution. Through mathematical simulations and comparative experiments, it is demonstrated that the proposed method converges quickly, and the positioning accuracy of the method was improved by 21.98% and 13.03% compared to the loosely coupled GNSS/INS and the loosely coupled UWB/INS navigation methods, respectively. Furthermore, as shown by the error-variation curves, the main performance of the proposed fusion-filtering method was largely influenced by the accuracy and robustness of the sensors in the kinematic ESKF. Furthermore, the algorithm proposed in this paper demonstrated good generalizability, plug-and-play, and robustness through comparative analysis experiments.
Variance-constrained Distributed H∞ Filtering for Nonlinear Systems with Successive Packet Dropouts Over Wireless Sensor Networks
In this paper, the distributed H ∞ filtering problem is investigated for a class of nonlinear systems over wireless sensor networks (WSNs) with successive packet dropouts (SPDs) and multiplicative noise under an eventtriggered communication mechanism (ETCM). A series of uncorrelated random variables which obey the Bernoulli distribution are used to characterize the induced phenomenon of SPDs occurring in network communication. The ETCM based on the relative error between the estimated signals is introduced to reduce the burden of communication and achieve the purpose of saving network resources. The measurement information on each sensor node can be transmitted to its neighboring nodes only when the certain triggering condition is satisfied. In view of WSNs, a distributed filtering error system model is firstly built to take SPDs together with multiplicative noise into account. Then, sufficient conditions are established to ensure both the prescribed H ∞ performance requirement and the filtering error variance constraint over a finite-horizon. Moreover, the design method of filter parameters is given in terms of matrix inequalities. Finally, a numerical example is presented to verify the effectiveness and feasibility of the proposed distributed H ∞ filters design scheme.
Performance analysis of M‐ary OQAM/FBMC with impact of nonlinear distortion over compound Rician K‐factor unshadowed/κ−μ shadowed fad ing channels
In this paper, the bit error rate (BER) analyses of M‐ary offset QAM for filter bank‐based multicarrier (M‐ary OQAM/FBMC) contaminated by nonlinear distortion (NLD) are investigated over different channel scenarios, such as unshadowed line‐of‐sight (LOS) Rician K‐factor (RK‐f) fading channel, non‐line‐of‐sight (NLOS) κ−μ shadowed fading model and compound unshadowed/shadowed fading model. NLDs produced by high power amplifier (HPA) play the main role in the degradation of the BER in multicarrier communication systems over fading channels. Therefore, the complex Gaussian noise and the complex NLD are modelled as an independent parameter by using Bussgang's theorem. In this work, closed‐form of BER, ergodic capacity, outage probability and outage capacity probability expressions for the M‐ary OQAM/FBMC system over different unshadowed/shadowed fading channel scenarios and environments with amplitude (AM) and phase (PM) distortion induced by the HPA have been theoretically derived as general expressions without numerical integration method. Extensive Monte‐Carlo simulation results demonstrate a closed agreement with all analytical derived expressions.
2D and 3D Angles-Only Target Tracking Based on Maximum Correntropy Kalman Filters
In this paper, angles-only target tracking (AoT) problem is investigated in the non Gaussian environment. Since the conventional minimum mean square error criterion based estimators tend to give poor accuracy in the presence of large outliers or impulsive noises in measurement, a maximum correntropy criterion (MCC) based framework is presented. Accordingly, three new estimation algorithms are developed for AoT problems based on the conventional sigma point filters, termed as MC-UKF-CK, MC-NSKF-GK and MC-NSKF-CK. Here MC-NSKF-GK represents the maximum correntropy new sigma point Kalman filter realized using Gaussian kernel and MC-NSKF-CK represents realization using Cauchy kernel. Similarly, based on the unscented Kalman filter, MC-UKF-CK has been developed. The performance of all these estimators is evaluated in terms of root-mean-square error (RMSE) in position and % track loss. The simulations were carried out for 2D as well as 3D AoT scenarios and it was inferred that, the developed algorithms performed with improved estimation accuracy than the conventional ones, in the presence of non Gaussian measurement noise.
Filtering in Triplet Markov Chain Model in the Presence of Non-Gaussian Noise with Application to Target Tracking
In hidden Markov chain (HMC) models, widely used for target tracking, the process noise and measurement noise are in general assumed to be independent and Gaussian for mathematical simplicity. However, the independence and Gaussian assumptions do not always hold in practice. For instance, in a typical radar tracking application, the measurement noise is correlated over time as the sampling frequency of a radar is generally much higher than the bandwidth of the measurement noise. In addition, target maneuvers and measurement outliers imply that the process noise and measurement noise are non-Gaussian. To solve this problem, we resort to triplet Markov chain (TMC) models to describe stochastic systems with correlated noise and derive a new filter under the maximum correntropy criterion to deal with non-Gaussian noise. By stacking the state vector, measurement vector, and auxiliary vector into a triplet state vector, the TMC model can capture the complete dynamics of stochastic systems, which may be subjected to potential parameter uncertainty, non-stationarity, or error sources. Correntropy is used to measure the similarity of two random variables; unlike the commonly used minimum mean square error criterion, which uses only second-order statistics, correntropy uses second-order and higher-order information, and is more suitable for systems in the presence of non-Gaussian noise, particularly some heavy-tailed noise disturbances. Furthermore, to reduce the influence of round-off errors, a square-root implementation of the new filter is provided using QR decomposition. Instead of the full covariance matrices, corresponding Cholesky factors are recursively calculated in the square-root filtering algorithm. This is more numerically stable for ill-conditioned problems compared to the conventional filter. Finally, the effectiveness of the proposed algorithms is illustrated via three numerical examples.
A Suppression Method for Random Errors of IFOG Based on the Decoupling of Colored Noise-Spectrum Information
In high-precision inertial navigation systems, suppressing the random errors of a fiber-optic gyroscope is of great importance. However, the traditional rule-based autoregressive moving average modeling method, when applied in Kalman filtering considering colored noise, presents inherent disadvantages in principle, including inaccurate state equations and difficulties in state dimension expansion. To this end, the noise characteristics in the fiber-optic gyroscope signal are first deeply analyzed, a random error model form is clarified, and a new model-order determination criterion is proposed to achieve the high-precision modeling of random errors. Then, based on the effective suppression of the angle random walk error of the fiber-optic gyroscope, and combined with the linear system equation of its colored noise, an adaptive Kalman filter based on noise-spectrum information decoupling is designed. This breaks through the principled limitations of traditional methods in suppressing colored noise and provides a scheme for modeling and suppressing fiber-optic gyroscope random errors under static conditions. Experimental results show that, compared with existing methods, the initial alignment accuracy of the proposed method based on 5 min data of fiber-strapdown inertial navigation is improved by an average of 48%.
Sliding window constrained fault-tolerant filtering of compressor vibration data
This paper presents a sliding window constrained fault-tolerant filtering method for sampling data in petrochemical instrumentation. The method requires the design of an appropriate sliding window width based on the time series, as well as the expansion of both ends of the series. By utilizing a sliding window constraint function, the method produces a smoothed estimate for the current moment within the window. As the window advances, a series of smoothed estimates of the original sampled data is generated. Subsequently, the original series is subtracted from this smoothed estimate to create a new series that represents the differences between the two. This difference series is then subjected to an additional smoothing estimation process, and the resulting smoothed estimates are employed to compensate for the smoothed estimates of the original sampled series. The experimental results indicate that, compared with sliding mean filtering, sliding median filtering and Savitzky–Golay filtering, the method proposed in this paper can more effectively filter out random errors and reduce the impact of outliers when dealing with sampling data contaminated by noise and outliers. It possesses strong fault tolerance and the ability to extract the true variations of the sampling data.
Application of Data Sensor Fusion Using Extended Kalman Filter Algorithm for Identification and Tracking of Moving Targets from LiDAR–Radar Data
In surveillance and monitoring systems, the use of mobile vehicles or unmanned aerial vehicles (UAVs), like the drone type, provides advantages in terms of access to the environment with enhanced range, maneuverability, and safety due to the ability to move omnidirectionally to explore, identify, and perform some security tasks. These activities must be performed autonomously by capturing data from the environment; usually, the data present errors and uncertainties that impact the recognition and resolution in the detection and identification of objects. The resolution in the acquisition of data can be improved by integrating data sensor fusion systems to measure the same physical phenomenon from two or more sensors by retrieving information simultaneously. This paper uses the constant turn and rate velocity (CTRV) kinematic model of a drone but includes the angular velocity not considered in previous works as a complementary alternative in Lidar and Radar data sensor fusion retrieved using UAVs and applying the extended Kalman filter (EKF) for the detection of moving targets. The performance of the EKF is evaluated by using a dataset that jointly includes position data captured from a LiDAR and a Radar sensor for an object in movement following a trajectory with sudden changes. Additive white Gaussian noise is then introduced into the data to degrade the data. Then, the root mean square error (RMSE) versus the increase in noise power is evaluated, and the results show an improvement of 0.4 for object detection over other conventional kinematic models that do not consider significant trajectory changes.
Hybrid Ensemble–Variational Filter: A Spatially and Temporally Varying Adaptive Algorithm to Estimate Relative Weighting
Model errors and sampling errors produce inaccurate sample covariances that limit the performance of ensemble Kalman filters. Linearly hybridizing the flow-dependent ensemble-based covariance with a time-invariant background covariance matrix gives a better estimate of the true error covariance. Previous studies have shown this, both in theory and in practice. How to choose the weight for each covariance remains an open question especially in the presence of model biases. This study assumes the weighting coefficient to be a random variable and then introduces a Bayesian scheme to estimate it using the available data. The scheme takes into account the discrepancy between the ensemble mean and the observations, the ensemble variance, the static background variance, and the uncertainties in the observations. The proposed algorithm is first derived for a spatially constant weight and then this assumption is relaxed by estimating a unique scalar weight for each state variable. Using twin experiments with the 40-variable Lorenz 96 system, it is shown that the proposed scheme is able to produce quality forecasts even in the presence of severe sampling errors. The adaptive algorithm allows the hybrid filter to switch between an EnKF and a simple EnOI depending on the statistics of the ensemble. In the presence of model errors, the adaptive scheme demonstrates additional improvements compared with standard enhancements alone, such as inflation and localization. Finally, the potential of the spatially varying variant to accommodate challenging sparse observation networks is demonstrated. The computational efficiency and storage of the proposed scheme, which remain an obstacle, are discussed.