Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "raw intermediate frequency (IF) samples"
Sort by:
Exploration of Multi-Mission Spaceborne GNSS-R Raw IF Data Sets: Processing, Data Products and Potential Applications
Earth reflected Global Navigation Satellite System (GNSS) signals can be received by dedicated orbital receivers for remote sensing and Earth observation (EO) purposes. Different spaceborne missions have been launched during the past years, most of which can only provide the delay-Doppler map (DDM) of the power of the reflected GNSS signals as their main data products. In addition to the power DDM products, some of these missions have collected a large amount of raw intermediate frequency (IF) data, which are the bit streams of raw signal samples recorded after the analog-to-digital converters (ADCs) and prior to any onboard digital processing. The unprocessed nature of these raw IF data provides an unique opportunity to explore the potential of GNSS Reflectometry (GNSS-R) technique for advanced geophysical applications and future spaceborne missions. To facilitate such explorations, the raw IF data sets from different missions have been processed by Institute of Space Sciences (ICE-CSIC, IEEC), and the corresponding data products, i.e., the complex waveform of the reflected signal, have been generated and released through our public open-data server. These complex waveform data products provide the measurements from different GNSS constellations (e.g., GPS, Galileo and BeiDou), and include both the amplitude and carrier phase information of the reflected GNSS signal at higher sampling rate (e.g., 1000 Hz). To demonstrate these advanced features of the data products, different applications, e.g., inland water detection and surface altimetry, are introduced in this paper. By making these complex waveform data products publicly available, new EO capability of the GNSS-R technique can be further explored by the community. Such early explorations are also relevant to ESA’s next GNSS-R mission, HydroGNSS, which will provide similar complex observations operationally and continuously in the future.