Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1
result(s) for
"realistic time varying load model"
Sort by:
Optimal DG integration and network reconfiguration in microgrid system with realistic time varying load model using hybrid optimisation
by
Kumar, Ashwani
,
Murty, Vallem Veera Venkata Satya Narayana
in
algebraic modelling system
,
Algorithms
,
Alternative energy sources
2019
The potential availability of renewable energy sources is unquestionable and the government is setting steep targets for renewable energy usage. Renewable‐based DGs, reduce dependence on fossil fuels, mitigate global climate change, ensure energy security, and reduce emissions of CO2 and other greenhouse gases. This study addresses microgrid system analysis with hybrid energy sources and reconfiguration simultaneously for efficient operation of the system. Microgrid zones are formulated categorically with the existing distribution system. In this study, wind, solar and small hydro‐based DGs are considered. Uncertainties of renewable power generation and load are also taken care in the optimization problem. A multi‐objective optimisation method proposed in this paper for optimal integration of renewable‐based DGs and reconfiguration of the network to minimise power loss and maximise annual cost savings. Optimal location and sizes of DG units are determined using gravitational search algorithm and general algebraic modelling system respectively. Optimal reconfiguration of the microgrid system is obtained using genetic algorithm. Simulation results are obtained for the IEEE 33‐bus system and compared with existing methods as available in the literature. Furthermore, this study has been carried out with a 24‐hr time‐varying distribution system. The simulation results show the efficiency and accuracy of the proposed technique.
Journal Article