Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "realistic time varying load model"
Sort by:
Optimal DG integration and network reconfiguration in microgrid system with realistic time varying load model using hybrid optimisation
The potential availability of renewable energy sources is unquestionable and the government is setting steep targets for renewable energy usage. Renewable‐based DGs, reduce dependence on fossil fuels, mitigate global climate change, ensure energy security, and reduce emissions of CO2 and other greenhouse gases. This study addresses microgrid system analysis with hybrid energy sources and reconfiguration simultaneously for efficient operation of the system. Microgrid zones are formulated categorically with the existing distribution system. In this study, wind, solar and small hydro‐based DGs are considered. Uncertainties of renewable power generation and load are also taken care in the optimization problem. A multi‐objective optimisation method proposed in this paper for optimal integration of renewable‐based DGs and reconfiguration of the network to minimise power loss and maximise annual cost savings. Optimal location and sizes of DG units are determined using gravitational search algorithm and general algebraic modelling system respectively. Optimal reconfiguration of the microgrid system is obtained using genetic algorithm. Simulation results are obtained for the IEEE 33‐bus system and compared with existing methods as available in the literature. Furthermore, this study has been carried out with a 24‐hr time‐varying distribution system. The simulation results show the efficiency and accuracy of the proposed technique.