Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,690 result(s) for "recolonization"
Sort by:
Arctic coastal benthos long-term responses to perturbations under climate warming: Climate change impact on Arctic benthos
Climate warming influences structure and function of Arctic benthic ecosystems. Assessing the response of these systems to perturbations requires long-term studies addressing key ecological processes related to recolonization and succession of species. Based on unique time-series (1980–2017), this study addresses successional patterns of hard-bottom benthos in two fjords in NW Svalbard after a pulse perturbation in 1980 and during a period of rapid climate warming. Analysis of seafloor photographs revealed different return rates of taxa, and variability in species densities, through time. It took 13 and 24 years for the community compositions of cleared and control transects to converge in the two fjords. Nearly two decades after the study initiation, an increase in filamentous and foliose macroalgae was observed with a subsequent reorganization in the invertebrate community. Trait analyses showed a decrease in body size and longevity of taxa in response to the pulse perturbation and a shift towards small/medium size and intermediate longevity following the macroalgae takeover. The observed slow recovery rates and abrupt shifts in community structure document the vulnerability of Arctic coastal ecosystems to perturbations and continued effects of climate warming. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model
With the desire to model population genetic processes under increasingly realistic scenarios, forward genetic simulations have become a critical part of the toolbox of modern evolutionary biology. The SLiM forward genetic simulation framework is one of the most powerful and widely used tools in this area. However, its foundation in the Wright–Fisher model has been found to pose an obstacle to implementing many types of models; it is difficult to adapt the Wright–Fisher model, with its many assumptions, to modeling ecologically realistic scenarios such as explicit space, overlapping generations, individual variation in reproduction, density-dependent population regulation, individual variation in dispersal or migration, local extinction and recolonization, mating between subpopulations, age structure, fitness-based survival and hard selection, emergent sex ratios, and so forth. In response to this need, we here introduce SLiM 3, which contains two key advancements aimed at abolishing these limitations. First, the new non-Wright–Fisher or “nonWF” model type provides a much more flexible foundation that allows the easy implementation of all of the above scenarios and many more. Second, SLiM 3 adds support for continuous space, including spatial interactions and spatial maps of environmental variables. We provide a conceptual overview of these new features, and present several example models to illustrate their use.
Liver regeneration: biological and pathological mechanisms and implications
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this ‘hepatostat’ will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.The liver has a broad range of regenerative capacities. In this Review, Michalopoulos and Bhushan describe the regenerative mechanisms employed by hepatic cells after liver injury as well as the experimental models used to investigate these mechanisms and discuss the clinical implications.
Unexpected scenarios from Mediterranean refugial areas: disentangling complex demographic dynamics along the Apennine distribution of silver fir
Mediterranean refugial areas are generally underrepresented in large-scale genetic surveys of forest trees. In the case of silver fir (Abies alba Mill.), this has led to divergent hypotheses about the exact location of glacial refugia and the trajectory of recolonization routes. Based on the comprehensive sampling of Apennine populations, we aimed to reconcile discrepancies about the number and location of refugia for silver fir in the Apennines and test alternative demographic scenarios developed from palaeobotanical and genetic data. Location Mediterranean Basin; the Apennines and surrounding areas.Methods 1167 individuals from 16 Apennine populations, extensively covering the species’ distribution along the Italian Peninsula, and eight populations from the Alps and Eastern Europe were genotyped at 16 nuclear and three chloroplast microsatellite markers. The geographical distribution of genetic variation was explored using Bayesian clustering and multivariate methods. Based on the inferred genetic structure, the demographic history of A. alba was assessed by the approximate Bayesian computation (ABC) analysis.Results Two unexpected characteristics of genetic structure emerged: a sharp genetic boundary in the central Apennines and a tight genetic connection between southern Apennine and Eastern European gene pools. Two Apennine areas, corresponding precisely with refugial areas hypothesized in most recent palaeobotanical syntheses, have high genetic diversity on a par with Eastern European populations. ABC analysis showed an ancient separation between Apennine and Eastern European gene pools followed by an admixture event that, mainly through directional gene flow via pollen, might have established the genetic similarity between southern Apennine and Eastern European populations. In addition, there was evidence that the central Apennines acted as a small-scale, isolated refugium during the Last Glacial Maximum. Main conclusionsSilver fir rear edge populations have experienced a complex demographic history across several glacial-interglacial cycles, leading to unexpected genetic structure. Our study provides new insights into forest tree dynamics in the Mediterranean, showing the putative presence of multiple refugia for silver fir in the Apennines and a trans-Adriatic connection between silver fir populations in the southern Italy and the Balkans.
Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa
Immune systems distinguish \"self\" from \"nonself\" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.
Functional eradication as a framework for invasive species control
Invasive species continue to drive major losses in biodiversity and ecosystem function across the globe. Dealing with the effects of invasion is particularly problematic in marine and freshwater habitats, because the pace at which invaders establish often greatly outstrips the resources available for their eradication. While most managers in North America now focus on ongoing containment and suppression interventions, they often lack quantitative guidance from which to set targets and evaluate success. We propose practical guidelines for identifying management targets for invasions for which eradication is unfeasible, based on achieving “functional” eradication – defined as suppressing invader populations below levels that cause unacceptable ecological effects – within high-priority locations. We summarize key ecological information needed to inform this strategy, including density–impact functions and recolonization rates. We illustrate the framework’s application for setting local suppression targets using three globally invasive species as examples: red lionfish (Pterois spp), European green crab (Carcinus maenas), and rusty crayfish (Faxonius rusticus). Identifying targets for suppression allows managers to estimate the degree of removal required to mitigate ecological impacts and the management resources needed to achieve sufficient control of an invader.
Unraveling negative biotic interactions determining soil microbial community assembly and functioning
Abstract Microbial communities play important roles in all ecosystems and yet a comprehensive understanding of the ecological processes governing the assembly of these communities is missing. To address the role of biotic interactions between microorganisms in assembly and for functioning of the soil microbiota, we used a top-down manipulation approach based on the removal of various populations in a natural soil microbial community. We hypothesized that removal of certain microbial groups will strongly affect the relative fitness of many others, therefore unraveling the contribution of biotic interactions in shaping the soil microbiome. Here we show that 39% of the dominant bacterial taxa across treatments were subjected to competitive interactions during soil recolonization, highlighting the importance of biotic interactions in the assembly of microbial communities in soil. Moreover, our approach allowed the identification of microbial community assembly rule as exemplified by the competitive exclusion between members of Bacillales and Proteobacteriales. Modified biotic interactions resulted in greater changes in activities related to N- than to C-cycling. Our approach can provide a new and promising avenue to study microbial interactions in complex ecosystems as well as the links between microbial community composition and ecosystem function.
Arctic coastal benthos long-term responses to perturbations under climate warming
Climate warming influences structure and function of Arctic benthic ecosystems. Assessing the response of these systems to perturbations requires long-term studies addressing key ecological processes related to recolonization and succession of species. Based on unique time-series (1980–2017), this study addresses successional patterns of hard-bottom benthos in two fjords in NW Svalbard after a pulse perturbation in 1980 and during a period of rapid climate warming. Analysis of seafloor photographs revealed different return rates of taxa, and variability in species densities, through time. It took 13 and 24 years for the community compositions of cleared and control transects to converge in the two fjords. Nearly two decades after the study initiation, an increase in filamentous and foliose macroalgae was observed with a subsequent reorganization in the invertebrate community. Trait analyses showed a decrease in body size and longevity of taxa in response to the pulse perturbation and a shift towards small/medium size and intermediate longevity following the macroalgae takeover. The observed slow recovery rates and abrupt shifts in community structure document the vulnerability of Arctic coastal ecosystems to perturbations and continued effects of climate warming. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
Functional overlap of the Arabidopsis leaf and root microbiota
Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche. The microbiota of the rhizosphere (roots) and phyllosphere (leaves) of healthy plants consist of taxonomically structured bacterial communities; here the majority of species representing the main bacterial phyla from these two organs were isolated and genomes of about 400 representative bacteria were sequenced; the resources of cultured bacteria, corresponding genomes and a gnotobiotic plant system enabled an examination of the taxonomic overlap and functional specialization between the rhizosphere and phyllosphere bacterial microbiota. Root and leaf microbiota analysed The microbiota of the rhizosphere (roots) and phyllosphere (leaves) of healthy plants consist of taxonomically structured bacterial communities. In this study, the authors purified almost 8,000 bacterial isolates from Arabidopsis leaves and roots, representing the main bacterial phyla present. Genome sequencing of 400 representative strains was used to assess functional overlap between the soil, root and leaf microbiotas, and a gnotobiotic Arabidopsis system was used to reconstitute bacterial communities resembling those found in natural environments. The data collectively demonstrate the possibility of reciprocal relocation between root and leaf microbiota members and functional overlap in the communities, but there is also evidence for microbiota specialization to their respective niches.