Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"recombinant chitinase B"
Sort by:
Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops
2024
Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.
Journal Article
Co‐expression of the protease furin in Nicotiana benthamiana leads to efficient processing of latent transforming growth factor‐β1 into a biologically active protein
by
Adrichem, Marloes
,
Prakasa, Andreas D.
,
Wilbers, Ruud H. P.
in
Animals
,
Bioaccumulation
,
Bioassays
2016
Summary
Transforming growth factor beta (TGF‐β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF‐β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF‐β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF‐β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF‐β1 in the absence of the latency‐associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP‐TGF‐β1, we were able to show that processing of the latent complex by a furin‐like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP‐TGF‐β1, and co‐expression of human furin enabled the proteolytic processing of latent TGF‐β1. Engineering the plant post‐translational machinery by co‐expressing human furin also enhanced the accumulation of biologically active TGF‐β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing.
Journal Article
Effect of the chitin binding domain deletion from Bacillus thuringiensis subsp. kurstaki chitinase Chi255 on its stability in Escherichia coli
by
Masmoudi, I.
,
Jaoua, S.
,
Zouari, N.
in
Bacillus thuringiensis
,
Bacillus thuringiensis - enzymology
,
Bacillus thuringiensis - genetics
2007
Bacillus thuringiensis subsp. kurstaki BUPM255 secretes a chitobiosidase Chi255 having an expected molecular weight of 70.665 kDa. When the corresponding gene, chi255, was expressed in E. coli, the active form, extracted from the periplasmic fraction of E. coli/pBADchi255, was of about 54 kDa, which suggested that Chi255 was excessively degraded by the action of E. coli proteases. Therefore, in vitro progressive C-terminal Chi255 deleted derivatives were constructed in order to study their stability and their activity in E. coli. Interestingly, when the chitin binding domain (CBD) was deleted from Chi255, an active form (Chi2555Delta5) of expected size of about 60 kDa was extracted from the E. coli periplasmic fraction, without the observation of any proteolytic degradation. Compared to Chi255, Chi255Delta5 exhibited a higher chitinase activity on colloidal chitin. Both of the enzymes exhibit activities at broad pH and temperature ranges with maximal enzyme activities at pH 5 and pH 6 and at temperatures 50 degrees C and 40 degrees C, respectively for Chi255 and Chi255Delta5. Thus, it was concluded that the C-terminal deletion of Chi255 CBD might be a nice tool for avoiding the excessive chitinase degradation, observed in the native chitinase, and for improving its activity.
Journal Article
Molecular characterization of an endochitinase from Bacillus thuringiensis subsp. konkukian
by
Hafeez, Fauzia Yusuf
,
Xiao, Xiang
,
Wang, Fengping
in
Antimicrobial agents
,
Applied Microbiology
,
Aspergillus niger
2010
A chitinase gene from Bacillus thuringiensis serovar konkukian S4 was cloned, sequenced, and heterologously expressed in Escherichia coli M15. Recombinant enzyme (Chi74) was purified by Ni-NTA affinity column chromatography. The chi74 gene contains an open reading frame (ORF), with a capacity to encode an endochitinase with a deduced molecular weight 74 kDa and predicted isoelectric point of 5.67. Comparison of Chi74 with other chitinases has shown that it contains a modular structure with an N-terminal family 18 catalytic-domain, a Fibronectin-III like domain and a C-terminal carbohydrate binding module (CBM-II). Turn over rate (K cat ) of the enzyme was determined using colloidal chitin (28.3 ± 0.70 S⁻¹) as substrate. The Purified enzyme was active at a broad range of pH (pH 3.5-7.5) and temperature (20-70°C) with a peak activity at pH 5.5 and 55°C. However, the enzyme was found to be stable up to 30°C for longer incubation periods. Moreover, the purified enzyme was shown to inhibit fungal spore germination and hyphal growth in the pathogenic fungi Fusarium oxysporum and Aspergillus niger. These studies will lead us to develop broad spectrum resistance in the crop plants via co-expression of the chitinases and the insecticidal proteins.
Journal Article
Inheritance, expression, and silencing of a chitinase transgene in rice
by
Chareonpornwattana, S
,
Thara, K.V
,
Wang, L
in
Biochemistry
,
Biological and medical sciences
,
Biotechnology
1999
The inheritance and expression of a transgene locus consisting of multiple copies of a rice chitinase gene under the control of the CaMV 35S promoter was studied in the T3 and T4 generations of a transformed line that expressed the chitinase at a high level. All T3 progeny of a homozygous T2 parent expressed the chitinase constitutively at 3 weeks after germination, but a proportion of the progeny had undetectable levels of chitinase 8 weeks after germination, indicating silencing of the transgene. Transgene silencing was also observed among progeny of a hemizygous parent. However, we did not observe chitinase gene silencing among progeny of another homozygous line that expressed the transgenic chitinase at a five- to tenfold lower level. Thus, expression level, rather than copy number, of the transgene appears to be critical for silencing. Silencing was observed in the leaf, sheath, and root tissues of the plant, indicating that it is not restricted to specific tissues. Silencing was first observed in the youngest leaves and only later in the oldest leaves of the same plant. There was co-silencing of the selectable marker gene, hpt, which is also driven by the CaMV 35S promoter. Unlike the two transgenes (chitinase and marker), the resident homologous chitinase gene with seed-specific expression and two nonhomologous chitinase genes induced in the leaves upon pathogen infection were not silenced. The silent phenotype was inherited in the T4 generation plants, while progeny of expressing plants exhibited silencing. The chitinase transgene appeared intact, and no evidence for gross alterations or methylation of CCGG sites was found. The silent phenotype could not be reversed by treatment with 5-azacytidine. Northern blot analysis and nuclear run-on transcription studies indicated that silencing occurred at the transcriptional level. The implications of transgene silencing in genetic engineering of monocot plants for disease resistance are discussed.
Journal Article