Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
39,870
result(s) for
"recombination"
Sort by:
Coevolution between transposable elements and recombination
by
Uzunović, Jasmina
,
Wright, Stephen I.
,
Kent, Tyler V.
in
Accumulation
,
Coevolution
,
Correlation
2017
One of the most striking patterns of genome structure is the tight, typically negative, association between transposable elements (TEs) and meiotic recombination rates. While this is a highly recurring feature of eukaryotic genomes, the mechanisms driving correlations between TEs and recombination remain poorly understood, and distinguishing cause versus effect is challenging. Here, we review the evidence for a relation between TEs and recombination, and discuss the underlying evolutionary forces. Evidence to date suggests that overall TE densities correlate negatively with recombination, but the strength of this correlation varies across element types, and the pattern can be reversed. Results suggest that heterogeneity in the strength of selection against ectopic recombination and gene disruption can drive TE accumulation in regions of low recombination, but there is also strong evidence that the regulation of TEs can influence local recombination rates. We hypothesize that TE insertion polymorphism may be important in driving within-species variation in recombination rates in surrounding genomic regions. Furthermore, the interaction between TEs and recombination may create positive feedback, whereby TE accumulation in non-recombining regions contributes to the spread of recombination suppression. Further investigation of the coevolution between recombination and TEs has important implications for our understanding of the evolution of recombination rates and genome structure.
This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Journal Article
Transgeneration memory of stress in plants
by
Zipfel, C
,
Molinier, J
,
Ries, G
in
Acclimatization - drug effects
,
Acclimatization - radiation effects
,
Adaptation to environment and cultivation conditions
2006
Leafy Legacy
Plants can't run from unpleasantness such as too much or too little heat or light. Instead they show varying degrees of tolerance by reacting to stress with a range of physiological responses. Surprisingly, when
Arabidopsis thaliana
plants are exposed to stress (UV light or a chemical mimicking pathogenic attack), changes are seen not only in the treated plants but also in several generations of their untreated offspring. The plants 'remember' the stress, presumably using an as-yet unknown epigenetic mechanism. Echoes, but only echoes, of the discredited lamarckian idea of chromosomal inheritance of acquired traits.
Plants exposed to environmental stresses such as ultraviolet light exhibit increased recombination between homologous chromosomes. Here, the progeny of plants that were exposed to an environmental stress also exhibited increased levels of genetic recombination, even though the progeny were not actually exposed to the stress.
Owing to their sessile nature, plants are constantly exposed to a multitude of environmental stresses to which they react with a battery of responses. The result is plant tolerance to conditions such as excessive or inadequate light, water, salt and temperature, and resistance to pathogens. Not only is plant physiology known to change under abiotic or biotic stress, but changes in the genome have also been identified
1
,
2
,
3
,
4
,
5
. However, it was not determined whether plants from successive generations of the original, stressed plants inherited the capacity for genomic change. Here we show that in
Arabidopsis thaliana
plants treated with short-wavelength radiation (ultraviolet-C) or flagellin (an elicitor of plant defences
6
), somatic homologous recombination of a transgenic reporter is increased in the treated population and these increased levels of homologous recombination persist in the subsequent, untreated generations. The epigenetic trait of enhanced homologous recombination could be transmitted through both the maternal and the paternal crossing partner, and proved to be dominant. The increase of the hyper-recombination state in generations subsequent to the treated generation was independent of the presence of the transgenic allele (the recombination substrate under consideration) in the treated plant. We conclude that environmental factors lead to increased genomic flexibility even in successive, untreated generations, and may increase the potential for adaptation.
Journal Article
Structural Variation Shapes the Landscape of Recombination in Mouse
2017
Meiotic recombination ensures the faithful segregation of chromosomes and influences patterns of genetic diversity. Morgan et al. used genotype data..
Meiotic recombination is an essential feature of sexual reproduction that ensures faithful segregation of chromosomes and redistributes genetic variants in populations. Multiparent populations such as the Diversity Outbred (DO) mouse stock accumulate large numbers of crossover (CO) events between founder haplotypes, and thus present a unique opportunity to study the role of genetic variation in shaping the recombination landscape. We obtained high-density genotype data from 6886 DO mice, and localized 2.2 million CO events to intervals with a median size of 28 kb. The resulting sex-averaged genetic map of the DO population is highly concordant with large-scale (order 10 Mb) features of previously reported genetic maps for mouse. To examine fine-scale (order 10 kb) patterns of recombination in the DO, we overlaid putative recombination hotspots onto our CO intervals. We found that CO intervals are enriched in hotspots compared to the genomic background. However, as many as 26% of CO intervals do not overlap any putative hotspots, suggesting that our understanding of hotspots is incomplete. We also identified coldspots encompassing 329 Mb, or 12% of observable genome, in which there is little or no recombination. In contrast to hotspots, which are a few kilobases in size, and widely scattered throughout the genome, coldspots have a median size of 2.1 Mb and are spatially clustered. Coldspots are strongly associated with copy-number variant (CNV) regions, especially multi-allelic clusters, identified from whole-genome sequencing of 228 DO mice. Genes in these regions have reduced expression, and epigenetic features of closed chromatin in male germ cells, which suggests that CNVs may repress recombination by altering chromatin structure in meiosis. Our findings demonstrate how multiparent populations, by bridging the gap between large-scale and fine-scale genetic mapping, can reveal new features of the recombination landscape.
Journal Article
RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination
2013
Synthetic lethality is an approach to study selective cell killing based on genotype. Previous work in our laboratory has shown that loss of RAD52 is synthetically lethal with BRCA2 deficiency, while exhibiting no impact on cell growth and viability in BRCA2-proficient cells. We now show that this same synthetically lethal relationship is evident in cells with deficiencies in BRCA1 or PALB2, which implicates BRCA1, PALB2 and BRCA2 in an epistatic relationship with one another. When RAD52 was depleted in BRCA1- or PALB2-deficient cells, a severe reduction in plating efficiency was observed, with many abortive attempts at cell division apparent in the double-depleted background. In contrast, when RAD52 was depleted in a BRCA1- or PALB2-wildtype background, a negligible decrease in colony survival was observed. The frequency of ionizing radiation-induced RAD51 foci formation and double-strand break-induced homologous recombination (HR) was decreased by 3- and 10-fold, respectively, when RAD52 was knocked down in BRCA1- or PALB2-depleted cells, with minimal effect in BRCA1- or PALB2-proficient cells. RAD52 function was independent of BRCA1 status, as evidenced by the lack of any defect in RAD52 foci formation in BRCA1-depleted cells. Collectively, these findings suggest that RAD52 is an alternative repair pathway of RAD51-mediated HR, and a target for therapy in cells deficient in the BRCA1–PALB2–BRCA2 repair pathway.
Journal Article
Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes
2021
Electroluminescence efficiencies of metal halide perovskite nanocrystals (PNCs) are limited by a lack of material strategies that can both suppress the formation of defects and enhance the charge carrier confinement. Here we report a one-dopant alloying strategy that generates smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects (reducing non-radiative recombination). Doping of guanidinium into formamidinium lead bromide PNCs yields limited bulk solubility while creating an entropy-stabilized phase in the PNCs and leading to smaller PNCs with more carrier confinement. The extra guanidinium segregates to the surface and stabilizes the undercoordinated sites. Furthermore, a surface-stabilizing 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene was applied as a bromide vacancy healing agent. The result is highly efficient PNC-based light-emitting diodes that have current efficiency of 108 cd A−1 (external quantum efficiency of 23.4%), which rises to 205 cd A−1 (external quantum efficiency of 45.5%) with a hemispherical lens.Guanidinium doping is shown to enhance the operation of perovskite nanocrystal light-emitting diodes.
Journal Article
Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots
2018
Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae. We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species.
Journal Article
Homologous recombination proficiency in ovarian and breast cancer patients
by
Hamouda, Danae M.
,
Dworkin, Lance
,
Nemunaitis, John
in
Biomedical and Life Sciences
,
Biomedicine
,
BRCA1 protein
2021
Homologous recombination and DNA repair are important for genome maintenance. Genetic variations in essential homologous recombination genes, including
BRCA1
and
BRCA2
results in homologous recombination deficiency (HRD) and can be a target for therapeutic strategies including poly (ADP-ribose) polymerase inhibitors (PARPi). However, response is limited in patients who are not HRD, highlighting the need for reliable and robust HRD testing. This manuscript will review
BRCA1/2
function and homologous recombination proficiency in respect to breast and ovarian cancer. The current standard testing methods for HRD will be discussed as well as trials leading to approval of PARPi’s. Finally, standard of care treatment and synthetic lethality will be reviewed.
Journal Article
Connecting theory and data to understand recombination rate evolution
2017
Meiotic recombination is necessary for successful gametogenesis in most sexually reproducing organisms and is a fundamental genomic parameter, influencing the efficacy of selection and the fate of new mutations. The molecular and evolutionary functions of recombination should impose strong selective constraints on the range of recombination rates. Yet, variation in recombination rate is observed on a variety of genomic and evolutionary scales. In the past decade, empirical studies have described variation in recombination rate within genomes, between individuals, between sexes, between populations and between species. At the same time, theoretical work has provided an increasingly detailed picture of the evolutionary advantages to recombination. Perhaps surprisingly, the causes of natural variation in recombination rate remain poorly understood. We argue that empirical and theoretical approaches to understand the evolution of recombination have proceeded largely independently of each other. Most models that address the evolution of recombination rate were created to explain the evolutionary advantage of recombination rather than quantitative differences in rate among individuals. Conversely, most empirical studies aim to describe variation in recombination rate, rather than to test evolutionary hypotheses. In this Perspective, we argue that efforts to integrate the rich bodies of empirical and theoretical work on recombination rate are crucial to moving this field forward. We provide new directions for the development of theory and the production of data that will jointly close this gap.
This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Journal Article
Recombination: the good, the bad and the variable
2017
Recombination, the process by which DNA strands are broken and repaired, producing new combinations of alleles, occurs in nearly all multicellular organisms and has important implications for many evolutionary processes. The effects of recombination can be good, as it can facilitate adaptation, but also bad when it breaks apart beneficial combinations of alleles, and recombination is highly variable between taxa, species, individuals and across the genome. Understanding how and why recombination rate varies is a major challenge in biology. Most theoretical and empirical work has been devoted to understanding the role of recombination in the evolution of sex—comparing between sexual and asexual species or populations. How recombination rate evolves and what impact this has on evolutionary processes within sexually reproducing organisms has received much less attention. This Theme Issue focusses on how and why recombination rate varies in sexual species, and aims to coalesce knowledge of the molecular mechanisms governing recombination with our understanding of the evolutionary processes driving variation in recombination within and between species. By integrating these fields, we can identify important knowledge gaps and areas for future research, and pave the way for a more comprehensive understanding of how and why recombination rate varies.
Journal Article
Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring
2018
Organometal halide perovskites (OHP) are promising materials for low-cost, high-efficiency light-emitting diodes. In films with a distribution of two-dimensional OHP nanosheets and small three-dimensional nanocrystals, an energy funnel can be realized that concentrates the excitations in highly efficient radiative recombination centers. However, this energy funnel is likely to contain inefficient pathways as the size distribution of nanocrystals, the phase separation between the OHP and the organic phase. Here, we demonstrate that the OHP crystallite distribution and phase separation can be precisely controlled by adding a molecule that suppresses crystallization of the organic phase. We use these improved material properties to achieve OHP light-emitting diodes with an external quantum efficiency of 15.5%. Our results demonstrate that through the addition of judiciously selected molecular additives, sufficient carrier confinement with first-order recombination characteristics, and efficient suppression of non-radiative recombination can be achieved while retaining efficient charge transport characteristics.
Crystal sizes play a vital role in pushing up the efficiency of organometal halide perovskites based LEDs. Here Ban et al. incorporate a molecular additive to control the crystallite distribution and phase separation in the perovskite devices, resulting in high external quantum efficiency of 15.5%.
Journal Article